Description: Nonzero series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 6-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zprodn0.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| zprodn0.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| zprodn0.3 | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) | ||
| zprodn0.4 | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 ) | ||
| iprodn0.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) | ||
| iprodn0.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) | ||
| Assertion | iprodn0 | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑍 𝐵 = 𝑋 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zprodn0.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | zprodn0.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | zprodn0.3 | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) | |
| 4 | zprodn0.4 | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 ) | |
| 5 | iprodn0.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) | |
| 6 | iprodn0.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) | |
| 7 | ssidd | ⊢ ( 𝜑 → 𝑍 ⊆ 𝑍 ) | |
| 8 | iftrue | ⊢ ( 𝑘 ∈ 𝑍 → if ( 𝑘 ∈ 𝑍 , 𝐵 , 1 ) = 𝐵 ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → if ( 𝑘 ∈ 𝑍 , 𝐵 , 1 ) = 𝐵 ) | 
| 10 | 5 9 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝑍 , 𝐵 , 1 ) ) | 
| 11 | 1 2 3 4 7 10 6 | zprodn0 | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑍 𝐵 = 𝑋 ) |