Metamath Proof Explorer


Theorem iprodn0

Description: Nonzero series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 6-Dec-2017)

Ref Expression
Hypotheses zprodn0.1 𝑍 = ( ℤ𝑀 )
zprodn0.2 ( 𝜑𝑀 ∈ ℤ )
zprodn0.3 ( 𝜑𝑋 ≠ 0 )
zprodn0.4 ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 )
iprodn0.5 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐵 )
iprodn0.6 ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℂ )
Assertion iprodn0 ( 𝜑 → ∏ 𝑘𝑍 𝐵 = 𝑋 )

Proof

Step Hyp Ref Expression
1 zprodn0.1 𝑍 = ( ℤ𝑀 )
2 zprodn0.2 ( 𝜑𝑀 ∈ ℤ )
3 zprodn0.3 ( 𝜑𝑋 ≠ 0 )
4 zprodn0.4 ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 )
5 iprodn0.5 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐵 )
6 iprodn0.6 ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℂ )
7 ssidd ( 𝜑𝑍𝑍 )
8 iftrue ( 𝑘𝑍 → if ( 𝑘𝑍 , 𝐵 , 1 ) = 𝐵 )
9 8 adantl ( ( 𝜑𝑘𝑍 ) → if ( 𝑘𝑍 , 𝐵 , 1 ) = 𝐵 )
10 5 9 eqtr4d ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = if ( 𝑘𝑍 , 𝐵 , 1 ) )
11 1 2 3 4 7 10 6 zprodn0 ( 𝜑 → ∏ 𝑘𝑍 𝐵 = 𝑋 )