Step |
Hyp |
Ref |
Expression |
1 |
|
iprodcl.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
iprodcl.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
iprodcl.3 |
⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ) |
4 |
|
iprodcl.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
5 |
|
iprodrecl.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) |
6 |
5
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
7 |
1 2 3 4 6
|
iprodclim2 |
⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ ∏ 𝑘 ∈ 𝑍 𝐴 ) |
8 |
4 5
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
9 |
|
remulcl |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑘 · 𝑥 ) ∈ ℝ ) |
10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ ) ) → ( 𝑘 · 𝑥 ) ∈ ℝ ) |
11 |
1 2 8 10
|
seqf |
⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) : 𝑍 ⟶ ℝ ) |
12 |
11
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
13 |
1 2 7 12
|
climrecl |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑍 𝐴 ∈ ℝ ) |