Step |
Hyp |
Ref |
Expression |
1 |
|
dipfval.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
dipfval.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
3 |
|
dipfval.4 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) |
4 |
|
dipfval.6 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
5 |
|
dipfval.7 |
⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) |
6 |
1 3
|
nvsid |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 1 𝑆 𝐵 ) = 𝐵 ) |
7 |
6
|
oveq2d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 ( 1 𝑆 𝐵 ) ) = ( 𝐴 𝐺 𝐵 ) ) |
8 |
7
|
fveq2d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐺 ( 1 𝑆 𝐵 ) ) ) = ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ) |
9 |
8
|
oveq1d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 1 𝑆 𝐵 ) ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) ) |
10 |
9
|
3adant2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 1 𝑆 𝐵 ) ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) ) |
11 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
12 |
1 2 3 4 5
|
ipval2lem2 |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 1 ∈ ℂ ) → ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 1 𝑆 𝐵 ) ) ) ↑ 2 ) ∈ ℝ ) |
13 |
11 12
|
mpan2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 1 𝑆 𝐵 ) ) ) ↑ 2 ) ∈ ℝ ) |
14 |
10 13
|
eqeltrrd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) ∈ ℝ ) |