Metamath Proof Explorer
Description: Lemma for ipval3 . (Contributed by NM, 1-Feb-2007)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
dipfval.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
|
|
dipfval.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
|
|
dipfval.4 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) |
|
|
dipfval.6 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
|
|
dipfval.7 |
⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) |
|
Assertion |
ipval2lem4 |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐶 𝑆 𝐵 ) ) ) ↑ 2 ) ∈ ℂ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
dipfval.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
dipfval.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
3 |
|
dipfval.4 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) |
4 |
|
dipfval.6 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
5 |
|
dipfval.7 |
⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) |
6 |
1 2 3 4 5
|
ipval2lem2 |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐶 𝑆 𝐵 ) ) ) ↑ 2 ) ∈ ℝ ) |
7 |
6
|
recnd |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝐶 𝑆 𝐵 ) ) ) ↑ 2 ) ∈ ℂ ) |