Metamath Proof Explorer


Theorem ipz

Description: The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of Kreyszig p. 129. (Contributed by NM, 24-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses dip0r.1 𝑋 = ( BaseSet ‘ 𝑈 )
dip0r.5 𝑍 = ( 0vec𝑈 )
dip0r.7 𝑃 = ( ·𝑖OLD𝑈 )
Assertion ipz ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ) → ( ( 𝐴 𝑃 𝐴 ) = 0 ↔ 𝐴 = 𝑍 ) )

Proof

Step Hyp Ref Expression
1 dip0r.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 dip0r.5 𝑍 = ( 0vec𝑈 )
3 dip0r.7 𝑃 = ( ·𝑖OLD𝑈 )
4 eqid ( normCV𝑈 ) = ( normCV𝑈 )
5 1 4 3 ipidsq ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ) → ( 𝐴 𝑃 𝐴 ) = ( ( ( normCV𝑈 ) ‘ 𝐴 ) ↑ 2 ) )
6 5 eqeq1d ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ) → ( ( 𝐴 𝑃 𝐴 ) = 0 ↔ ( ( ( normCV𝑈 ) ‘ 𝐴 ) ↑ 2 ) = 0 ) )
7 1 4 nvcl ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ) → ( ( normCV𝑈 ) ‘ 𝐴 ) ∈ ℝ )
8 7 recnd ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ) → ( ( normCV𝑈 ) ‘ 𝐴 ) ∈ ℂ )
9 sqeq0 ( ( ( normCV𝑈 ) ‘ 𝐴 ) ∈ ℂ → ( ( ( ( normCV𝑈 ) ‘ 𝐴 ) ↑ 2 ) = 0 ↔ ( ( normCV𝑈 ) ‘ 𝐴 ) = 0 ) )
10 8 9 syl ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ) → ( ( ( ( normCV𝑈 ) ‘ 𝐴 ) ↑ 2 ) = 0 ↔ ( ( normCV𝑈 ) ‘ 𝐴 ) = 0 ) )
11 1 2 4 nvz ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ) → ( ( ( normCV𝑈 ) ‘ 𝐴 ) = 0 ↔ 𝐴 = 𝑍 ) )
12 6 10 11 3bitrd ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ) → ( ( 𝐴 𝑃 𝐴 ) = 0 ↔ 𝐴 = 𝑍 ) )