Metamath Proof Explorer


Theorem irec

Description: The reciprocal of _i . (Contributed by NM, 11-Oct-1999)

Ref Expression
Assertion irec ( 1 / i ) = - i

Proof

Step Hyp Ref Expression
1 ax-icn i ∈ ℂ
2 1 1 mulneg2i ( i · - i ) = - ( i · i )
3 ixi ( i · i ) = - 1
4 ax-1cn 1 ∈ ℂ
5 1 1 mulcli ( i · i ) ∈ ℂ
6 4 5 negcon2i ( 1 = - ( i · i ) ↔ ( i · i ) = - 1 )
7 3 6 mpbir 1 = - ( i · i )
8 2 7 eqtr4i ( i · - i ) = 1
9 negicn - i ∈ ℂ
10 ine0 i ≠ 0
11 4 1 9 10 divmuli ( ( 1 / i ) = - i ↔ ( i · - i ) = 1 )
12 8 11 mpbir ( 1 / i ) = - i