Step |
Hyp |
Ref |
Expression |
1 |
|
opab0 |
⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) } = ∅ ↔ ∀ 𝑥 ∀ 𝑦 ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) ) |
2 |
|
opabresid |
⊢ ( I ↾ 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) } |
3 |
2
|
eqeq1i |
⊢ ( ( I ↾ 𝐴 ) = ∅ ↔ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) } = ∅ ) |
4 |
|
nel02 |
⊢ ( 𝐴 = ∅ → ¬ 𝑥 ∈ 𝐴 ) |
5 |
4
|
intnanrd |
⊢ ( 𝐴 = ∅ → ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) ) |
6 |
5
|
alrimivv |
⊢ ( 𝐴 = ∅ → ∀ 𝑥 ∀ 𝑦 ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) ) |
7 |
|
ianor |
⊢ ( ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) ↔ ( ¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 = 𝑥 ) ) |
8 |
7
|
albii |
⊢ ( ∀ 𝑦 ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) ↔ ∀ 𝑦 ( ¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 = 𝑥 ) ) |
9 |
|
19.32v |
⊢ ( ∀ 𝑦 ( ¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 = 𝑥 ) ↔ ( ¬ 𝑥 ∈ 𝐴 ∨ ∀ 𝑦 ¬ 𝑦 = 𝑥 ) ) |
10 |
|
id |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐴 ) |
11 |
|
ax6v |
⊢ ¬ ∀ 𝑦 ¬ 𝑦 = 𝑥 |
12 |
11
|
pm2.21i |
⊢ ( ∀ 𝑦 ¬ 𝑦 = 𝑥 → ¬ 𝑥 ∈ 𝐴 ) |
13 |
10 12
|
jaoi |
⊢ ( ( ¬ 𝑥 ∈ 𝐴 ∨ ∀ 𝑦 ¬ 𝑦 = 𝑥 ) → ¬ 𝑥 ∈ 𝐴 ) |
14 |
9 13
|
sylbi |
⊢ ( ∀ 𝑦 ( ¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑦 = 𝑥 ) → ¬ 𝑥 ∈ 𝐴 ) |
15 |
8 14
|
sylbi |
⊢ ( ∀ 𝑦 ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) → ¬ 𝑥 ∈ 𝐴 ) |
16 |
15
|
alimi |
⊢ ( ∀ 𝑥 ∀ 𝑦 ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) → ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) |
17 |
|
eq0 |
⊢ ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) |
18 |
16 17
|
sylibr |
⊢ ( ∀ 𝑥 ∀ 𝑦 ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) → 𝐴 = ∅ ) |
19 |
6 18
|
impbii |
⊢ ( 𝐴 = ∅ ↔ ∀ 𝑥 ∀ 𝑦 ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥 ) ) |
20 |
1 3 19
|
3bitr4ri |
⊢ ( 𝐴 = ∅ ↔ ( I ↾ 𝐴 ) = ∅ ) |