| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opab0 | ⊢ ( { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝑥 ) }  =  ∅  ↔  ∀ 𝑥 ∀ 𝑦 ¬  ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝑥 ) ) | 
						
							| 2 |  | opabresid | ⊢ (  I   ↾  𝐴 )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝑥 ) } | 
						
							| 3 | 2 | eqeq1i | ⊢ ( (  I   ↾  𝐴 )  =  ∅  ↔  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝑥 ) }  =  ∅ ) | 
						
							| 4 |  | nel02 | ⊢ ( 𝐴  =  ∅  →  ¬  𝑥  ∈  𝐴 ) | 
						
							| 5 | 4 | intnanrd | ⊢ ( 𝐴  =  ∅  →  ¬  ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝑥 ) ) | 
						
							| 6 | 5 | alrimivv | ⊢ ( 𝐴  =  ∅  →  ∀ 𝑥 ∀ 𝑦 ¬  ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝑥 ) ) | 
						
							| 7 |  | ianor | ⊢ ( ¬  ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝑥 )  ↔  ( ¬  𝑥  ∈  𝐴  ∨  ¬  𝑦  =  𝑥 ) ) | 
						
							| 8 | 7 | albii | ⊢ ( ∀ 𝑦 ¬  ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝑥 )  ↔  ∀ 𝑦 ( ¬  𝑥  ∈  𝐴  ∨  ¬  𝑦  =  𝑥 ) ) | 
						
							| 9 |  | 19.32v | ⊢ ( ∀ 𝑦 ( ¬  𝑥  ∈  𝐴  ∨  ¬  𝑦  =  𝑥 )  ↔  ( ¬  𝑥  ∈  𝐴  ∨  ∀ 𝑦 ¬  𝑦  =  𝑥 ) ) | 
						
							| 10 |  | id | ⊢ ( ¬  𝑥  ∈  𝐴  →  ¬  𝑥  ∈  𝐴 ) | 
						
							| 11 |  | ax6v | ⊢ ¬  ∀ 𝑦 ¬  𝑦  =  𝑥 | 
						
							| 12 | 11 | pm2.21i | ⊢ ( ∀ 𝑦 ¬  𝑦  =  𝑥  →  ¬  𝑥  ∈  𝐴 ) | 
						
							| 13 | 10 12 | jaoi | ⊢ ( ( ¬  𝑥  ∈  𝐴  ∨  ∀ 𝑦 ¬  𝑦  =  𝑥 )  →  ¬  𝑥  ∈  𝐴 ) | 
						
							| 14 | 9 13 | sylbi | ⊢ ( ∀ 𝑦 ( ¬  𝑥  ∈  𝐴  ∨  ¬  𝑦  =  𝑥 )  →  ¬  𝑥  ∈  𝐴 ) | 
						
							| 15 | 8 14 | sylbi | ⊢ ( ∀ 𝑦 ¬  ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝑥 )  →  ¬  𝑥  ∈  𝐴 ) | 
						
							| 16 | 15 | alimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ¬  ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝑥 )  →  ∀ 𝑥 ¬  𝑥  ∈  𝐴 ) | 
						
							| 17 |  | eq0 | ⊢ ( 𝐴  =  ∅  ↔  ∀ 𝑥 ¬  𝑥  ∈  𝐴 ) | 
						
							| 18 | 16 17 | sylibr | ⊢ ( ∀ 𝑥 ∀ 𝑦 ¬  ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝑥 )  →  𝐴  =  ∅ ) | 
						
							| 19 | 6 18 | impbii | ⊢ ( 𝐴  =  ∅  ↔  ∀ 𝑥 ∀ 𝑦 ¬  ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝑥 ) ) | 
						
							| 20 | 1 3 19 | 3bitr4ri | ⊢ ( 𝐴  =  ∅  ↔  (  I   ↾  𝐴 )  =  ∅ ) |