| Step | Hyp | Ref | Expression | 
						
							| 1 |  | irinitoringc.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑉 ) | 
						
							| 2 |  | irinitoringc.z | ⊢ ( 𝜑  →  ℤring  ∈  𝑈 ) | 
						
							| 3 |  | irinitoringc.c | ⊢ 𝐶  =  ( RingCat ‘ 𝑈 ) | 
						
							| 4 |  | zex | ⊢ ℤ  ∈  V | 
						
							| 5 | 4 | mptex | ⊢ ( 𝑧  ∈  ℤ  ↦  ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) )  ∈  V | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 7 |  | eqid | ⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 ) | 
						
							| 8 | 3 6 1 7 | ringchomfval | ⊢ ( 𝜑  →  ( Hom  ‘ 𝐶 )  =  (  RingHom   ↾  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) ) ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ( Hom  ‘ 𝐶 )  =  (  RingHom   ↾  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) ) ) ) | 
						
							| 10 | 9 | oveqd | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ( ℤring ( Hom  ‘ 𝐶 ) 𝑟 )  =  ( ℤring (  RingHom   ↾  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) ) ) 𝑟 ) ) | 
						
							| 11 |  | id | ⊢ ( ℤring  ∈  𝑈  →  ℤring  ∈  𝑈 ) | 
						
							| 12 |  | zringring | ⊢ ℤring  ∈  Ring | 
						
							| 13 | 12 | a1i | ⊢ ( ℤring  ∈  𝑈  →  ℤring  ∈  Ring ) | 
						
							| 14 | 11 13 | elind | ⊢ ( ℤring  ∈  𝑈  →  ℤring  ∈  ( 𝑈  ∩  Ring ) ) | 
						
							| 15 | 2 14 | syl | ⊢ ( 𝜑  →  ℤring  ∈  ( 𝑈  ∩  Ring ) ) | 
						
							| 16 | 3 6 1 | ringcbas | ⊢ ( 𝜑  →  ( Base ‘ 𝐶 )  =  ( 𝑈  ∩  Ring ) ) | 
						
							| 17 | 15 16 | eleqtrrd | ⊢ ( 𝜑  →  ℤring  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ℤring  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  𝑟  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 20 | 18 19 | ovresd | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ( ℤring (  RingHom   ↾  ( ( Base ‘ 𝐶 )  ×  ( Base ‘ 𝐶 ) ) ) 𝑟 )  =  ( ℤring  RingHom  𝑟 ) ) | 
						
							| 21 | 16 | eleq2d | ⊢ ( 𝜑  →  ( 𝑟  ∈  ( Base ‘ 𝐶 )  ↔  𝑟  ∈  ( 𝑈  ∩  Ring ) ) ) | 
						
							| 22 |  | elin | ⊢ ( 𝑟  ∈  ( 𝑈  ∩  Ring )  ↔  ( 𝑟  ∈  𝑈  ∧  𝑟  ∈  Ring ) ) | 
						
							| 23 | 22 | simprbi | ⊢ ( 𝑟  ∈  ( 𝑈  ∩  Ring )  →  𝑟  ∈  Ring ) | 
						
							| 24 | 21 23 | biimtrdi | ⊢ ( 𝜑  →  ( 𝑟  ∈  ( Base ‘ 𝐶 )  →  𝑟  ∈  Ring ) ) | 
						
							| 25 | 24 | imp | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  𝑟  ∈  Ring ) | 
						
							| 26 |  | eqid | ⊢ ( .g ‘ 𝑟 )  =  ( .g ‘ 𝑟 ) | 
						
							| 27 |  | eqid | ⊢ ( 𝑧  ∈  ℤ  ↦  ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) )  =  ( 𝑧  ∈  ℤ  ↦  ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) | 
						
							| 28 |  | eqid | ⊢ ( 1r ‘ 𝑟 )  =  ( 1r ‘ 𝑟 ) | 
						
							| 29 | 26 27 28 | mulgrhm2 | ⊢ ( 𝑟  ∈  Ring  →  ( ℤring  RingHom  𝑟 )  =  { ( 𝑧  ∈  ℤ  ↦  ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) } ) | 
						
							| 30 | 25 29 | syl | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ( ℤring  RingHom  𝑟 )  =  { ( 𝑧  ∈  ℤ  ↦  ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) } ) | 
						
							| 31 | 10 20 30 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ( ℤring ( Hom  ‘ 𝐶 ) 𝑟 )  =  { ( 𝑧  ∈  ℤ  ↦  ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) } ) | 
						
							| 32 |  | sneq | ⊢ ( 𝑓  =  ( 𝑧  ∈  ℤ  ↦  ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) )  →  { 𝑓 }  =  { ( 𝑧  ∈  ℤ  ↦  ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) } ) | 
						
							| 33 | 32 | eqeq2d | ⊢ ( 𝑓  =  ( 𝑧  ∈  ℤ  ↦  ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) )  →  ( ( ℤring ( Hom  ‘ 𝐶 ) 𝑟 )  =  { 𝑓 }  ↔  ( ℤring ( Hom  ‘ 𝐶 ) 𝑟 )  =  { ( 𝑧  ∈  ℤ  ↦  ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) } ) ) | 
						
							| 34 | 33 | spcegv | ⊢ ( ( 𝑧  ∈  ℤ  ↦  ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) )  ∈  V  →  ( ( ℤring ( Hom  ‘ 𝐶 ) 𝑟 )  =  { ( 𝑧  ∈  ℤ  ↦  ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) }  →  ∃ 𝑓 ( ℤring ( Hom  ‘ 𝐶 ) 𝑟 )  =  { 𝑓 } ) ) | 
						
							| 35 | 5 31 34 | mpsyl | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ∃ 𝑓 ( ℤring ( Hom  ‘ 𝐶 ) 𝑟 )  =  { 𝑓 } ) | 
						
							| 36 |  | eusn | ⊢ ( ∃! 𝑓 𝑓  ∈  ( ℤring ( Hom  ‘ 𝐶 ) 𝑟 )  ↔  ∃ 𝑓 ( ℤring ( Hom  ‘ 𝐶 ) 𝑟 )  =  { 𝑓 } ) | 
						
							| 37 | 35 36 | sylibr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ( Base ‘ 𝐶 ) )  →  ∃! 𝑓 𝑓  ∈  ( ℤring ( Hom  ‘ 𝐶 ) 𝑟 ) ) | 
						
							| 38 | 37 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑟  ∈  ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓  ∈  ( ℤring ( Hom  ‘ 𝐶 ) 𝑟 ) ) | 
						
							| 39 | 3 | ringccat | ⊢ ( 𝑈  ∈  𝑉  →  𝐶  ∈  Cat ) | 
						
							| 40 | 1 39 | syl | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 41 | 12 | a1i | ⊢ ( 𝜑  →  ℤring  ∈  Ring ) | 
						
							| 42 | 2 41 | elind | ⊢ ( 𝜑  →  ℤring  ∈  ( 𝑈  ∩  Ring ) ) | 
						
							| 43 | 42 16 | eleqtrrd | ⊢ ( 𝜑  →  ℤring  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 44 | 6 7 40 43 | isinito | ⊢ ( 𝜑  →  ( ℤring  ∈  ( InitO ‘ 𝐶 )  ↔  ∀ 𝑟  ∈  ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓  ∈  ( ℤring ( Hom  ‘ 𝐶 ) 𝑟 ) ) ) | 
						
							| 45 | 38 44 | mpbird | ⊢ ( 𝜑  →  ℤring  ∈  ( InitO ‘ 𝐶 ) ) |