Metamath Proof Explorer


Theorem irrapxlem6

Description: Lemma for irrapx1 . Explicit description of a non-closed set. (Contributed by Stefan O'Rear, 13-Sep-2014)

Ref Expression
Assertion irrapxlem6 ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) → ∃ 𝑥 ∈ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ( abs ‘ ( 𝑥𝐴 ) ) < 𝐵 )

Proof

Step Hyp Ref Expression
1 simplr ( ( ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) ∧ 𝑎 ∈ ℚ ) ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎𝐴 ) ) < 𝐵 ∧ ( abs ‘ ( 𝑎𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) → 𝑎 ∈ ℚ )
2 simpr1 ( ( ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) ∧ 𝑎 ∈ ℚ ) ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎𝐴 ) ) < 𝐵 ∧ ( abs ‘ ( 𝑎𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) → 0 < 𝑎 )
3 simpr3 ( ( ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) ∧ 𝑎 ∈ ℚ ) ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎𝐴 ) ) < 𝐵 ∧ ( abs ‘ ( 𝑎𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) → ( abs ‘ ( 𝑎𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) )
4 2 3 jca ( ( ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) ∧ 𝑎 ∈ ℚ ) ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎𝐴 ) ) < 𝐵 ∧ ( abs ‘ ( 𝑎𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) → ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) )
5 breq2 ( 𝑦 = 𝑎 → ( 0 < 𝑦 ↔ 0 < 𝑎 ) )
6 fvoveq1 ( 𝑦 = 𝑎 → ( abs ‘ ( 𝑦𝐴 ) ) = ( abs ‘ ( 𝑎𝐴 ) ) )
7 fveq2 ( 𝑦 = 𝑎 → ( denom ‘ 𝑦 ) = ( denom ‘ 𝑎 ) )
8 7 oveq1d ( 𝑦 = 𝑎 → ( ( denom ‘ 𝑦 ) ↑ - 2 ) = ( ( denom ‘ 𝑎 ) ↑ - 2 ) )
9 6 8 breq12d ( 𝑦 = 𝑎 → ( ( abs ‘ ( 𝑦𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ↔ ( abs ‘ ( 𝑎𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) )
10 5 9 anbi12d ( 𝑦 = 𝑎 → ( ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) ↔ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) )
11 10 elrab ( 𝑎 ∈ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ↔ ( 𝑎 ∈ ℚ ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) )
12 1 4 11 sylanbrc ( ( ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) ∧ 𝑎 ∈ ℚ ) ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎𝐴 ) ) < 𝐵 ∧ ( abs ‘ ( 𝑎𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) → 𝑎 ∈ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } )
13 simpr2 ( ( ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) ∧ 𝑎 ∈ ℚ ) ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎𝐴 ) ) < 𝐵 ∧ ( abs ‘ ( 𝑎𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) → ( abs ‘ ( 𝑎𝐴 ) ) < 𝐵 )
14 fvoveq1 ( 𝑥 = 𝑎 → ( abs ‘ ( 𝑥𝐴 ) ) = ( abs ‘ ( 𝑎𝐴 ) ) )
15 14 breq1d ( 𝑥 = 𝑎 → ( ( abs ‘ ( 𝑥𝐴 ) ) < 𝐵 ↔ ( abs ‘ ( 𝑎𝐴 ) ) < 𝐵 ) )
16 15 rspcev ( ( 𝑎 ∈ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ∧ ( abs ‘ ( 𝑎𝐴 ) ) < 𝐵 ) → ∃ 𝑥 ∈ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ( abs ‘ ( 𝑥𝐴 ) ) < 𝐵 )
17 12 13 16 syl2anc ( ( ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) ∧ 𝑎 ∈ ℚ ) ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎𝐴 ) ) < 𝐵 ∧ ( abs ‘ ( 𝑎𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) → ∃ 𝑥 ∈ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ( abs ‘ ( 𝑥𝐴 ) ) < 𝐵 )
18 irrapxlem5 ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) → ∃ 𝑎 ∈ ℚ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎𝐴 ) ) < 𝐵 ∧ ( abs ‘ ( 𝑎𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) )
19 17 18 r19.29a ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) → ∃ 𝑥 ∈ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ( abs ‘ ( 𝑥𝐴 ) ) < 𝐵 )