Metamath Proof Explorer


Theorem irredcl

Description: An irreducible element is in the ring. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses irredn0.i 𝐼 = ( Irred ‘ 𝑅 )
irredcl.b 𝐵 = ( Base ‘ 𝑅 )
Assertion irredcl ( 𝑋𝐼𝑋𝐵 )

Proof

Step Hyp Ref Expression
1 irredn0.i 𝐼 = ( Irred ‘ 𝑅 )
2 irredcl.b 𝐵 = ( Base ‘ 𝑅 )
3 eqid ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 )
4 eqid ( .r𝑅 ) = ( .r𝑅 )
5 2 3 1 4 isirred2 ( 𝑋𝐼 ↔ ( 𝑋𝐵 ∧ ¬ 𝑋 ∈ ( Unit ‘ 𝑅 ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 ( .r𝑅 ) 𝑦 ) = 𝑋 → ( 𝑥 ∈ ( Unit ‘ 𝑅 ) ∨ 𝑦 ∈ ( Unit ‘ 𝑅 ) ) ) ) )
6 5 simp1bi ( 𝑋𝐼𝑋𝐵 )