Step |
Hyp |
Ref |
Expression |
1 |
|
irredn0.i |
⊢ 𝐼 = ( Irred ‘ 𝑅 ) |
2 |
|
irredmul.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
irredmul.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
4 |
|
irredmul.t |
⊢ · = ( .r ‘ 𝑅 ) |
5 |
2 3 1 4
|
isirred2 |
⊢ ( ( 𝑋 · 𝑌 ) ∈ 𝐼 ↔ ( ( 𝑋 · 𝑌 ) ∈ 𝐵 ∧ ¬ ( 𝑋 · 𝑌 ) ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) ) |
6 |
5
|
simp3bi |
⊢ ( ( 𝑋 · 𝑌 ) ∈ 𝐼 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) |
7 |
|
eqid |
⊢ ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑌 ) |
8 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑦 ) ) |
9 |
8
|
eqeq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) ↔ ( 𝑋 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) ) |
10 |
|
eleq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ 𝑈 ↔ 𝑋 ∈ 𝑈 ) ) |
11 |
10
|
orbi1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ↔ ( 𝑋 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) |
12 |
9 11
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ↔ ( ( 𝑋 · 𝑦 ) = ( 𝑋 · 𝑌 ) → ( 𝑋 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) |
14 |
13
|
eqeq1d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 · 𝑦 ) = ( 𝑋 · 𝑌 ) ↔ ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑌 ) ) ) |
15 |
|
eleq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 ∈ 𝑈 ↔ 𝑌 ∈ 𝑈 ) ) |
16 |
15
|
orbi2d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ↔ ( 𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈 ) ) ) |
17 |
14 16
|
imbi12d |
⊢ ( 𝑦 = 𝑌 → ( ( ( 𝑋 · 𝑦 ) = ( 𝑋 · 𝑌 ) → ( 𝑋 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) ↔ ( ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑌 ) → ( 𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈 ) ) ) ) |
18 |
12 17
|
rspc2v |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑌 ) → ( 𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈 ) ) ) ) |
19 |
7 18
|
mpii |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) → ( 𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈 ) ) → ( 𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈 ) ) ) |
20 |
6 19
|
syl5 |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) ∈ 𝐼 → ( 𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈 ) ) ) |
21 |
20
|
3impia |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 · 𝑌 ) ∈ 𝐼 ) → ( 𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈 ) ) |