Description: The multiplicative identity is not irreducible. (Contributed by Mario Carneiro, 4-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | irredn0.i | ⊢ 𝐼 = ( Irred ‘ 𝑅 ) | |
irredn1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
Assertion | irredn1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ) → 𝑋 ≠ 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | irredn0.i | ⊢ 𝐼 = ( Irred ‘ 𝑅 ) | |
2 | irredn1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
3 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
4 | 3 2 | 1unit | ⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Unit ‘ 𝑅 ) ) |
5 | eleq1 | ⊢ ( 𝑋 = 1 → ( 𝑋 ∈ ( Unit ‘ 𝑅 ) ↔ 1 ∈ ( Unit ‘ 𝑅 ) ) ) | |
6 | 4 5 | syl5ibrcom | ⊢ ( 𝑅 ∈ Ring → ( 𝑋 = 1 → 𝑋 ∈ ( Unit ‘ 𝑅 ) ) ) |
7 | 6 | necon3bd | ⊢ ( 𝑅 ∈ Ring → ( ¬ 𝑋 ∈ ( Unit ‘ 𝑅 ) → 𝑋 ≠ 1 ) ) |
8 | 1 3 | irrednu | ⊢ ( 𝑋 ∈ 𝐼 → ¬ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) |
9 | 7 8 | impel | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ) → 𝑋 ≠ 1 ) |