Metamath Proof Explorer


Theorem irredn1

Description: The multiplicative identity is not irreducible. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses irredn0.i 𝐼 = ( Irred ‘ 𝑅 )
irredn1.o 1 = ( 1r𝑅 )
Assertion irredn1 ( ( 𝑅 ∈ Ring ∧ 𝑋𝐼 ) → 𝑋1 )

Proof

Step Hyp Ref Expression
1 irredn0.i 𝐼 = ( Irred ‘ 𝑅 )
2 irredn1.o 1 = ( 1r𝑅 )
3 eqid ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 )
4 3 2 1unit ( 𝑅 ∈ Ring → 1 ∈ ( Unit ‘ 𝑅 ) )
5 eleq1 ( 𝑋 = 1 → ( 𝑋 ∈ ( Unit ‘ 𝑅 ) ↔ 1 ∈ ( Unit ‘ 𝑅 ) ) )
6 4 5 syl5ibrcom ( 𝑅 ∈ Ring → ( 𝑋 = 1𝑋 ∈ ( Unit ‘ 𝑅 ) ) )
7 6 necon3bd ( 𝑅 ∈ Ring → ( ¬ 𝑋 ∈ ( Unit ‘ 𝑅 ) → 𝑋1 ) )
8 1 3 irrednu ( 𝑋𝐼 → ¬ 𝑋 ∈ ( Unit ‘ 𝑅 ) )
9 7 8 impel ( ( 𝑅 ∈ Ring ∧ 𝑋𝐼 ) → 𝑋1 )