Step |
Hyp |
Ref |
Expression |
1 |
|
irredn0.i |
⊢ 𝐼 = ( Irred ‘ 𝑅 ) |
2 |
|
irredneg.n |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
6 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
7 |
1 3
|
irredcl |
⊢ ( 𝑋 ∈ 𝐼 → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ) → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
9 |
3 4 5 2 6 8
|
rngnegr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝑁 ‘ 𝑋 ) ) |
10 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
11 |
10 5
|
1unit |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) |
12 |
10 2
|
unitnegcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
13 |
11 12
|
mpdan |
⊢ ( 𝑅 ∈ Ring → ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ) → ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
15 |
1 10 4
|
irredrmul |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ∈ 𝐼 ) |
16 |
14 15
|
mpd3an3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ∈ 𝐼 ) |
17 |
9 16
|
eqeltrrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐼 ) |