| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							irredn0.i | 
							⊢ 𝐼  =  ( Irred ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							irredneg.n | 
							⊢ 𝑁  =  ( invg ‘ 𝑅 )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 )  | 
						
						
							| 6 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐼 )  →  𝑅  ∈  Ring )  | 
						
						
							| 7 | 
							
								1 3
							 | 
							irredcl | 
							⊢ ( 𝑋  ∈  𝐼  →  𝑋  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantl | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐼 )  →  𝑋  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 9 | 
							
								3 4 5 2 6 8
							 | 
							ringnegr | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐼 )  →  ( 𝑋 ( .r ‘ 𝑅 ) ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) )  =  ( 𝑁 ‘ 𝑋 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ ( Unit ‘ 𝑅 )  =  ( Unit ‘ 𝑅 )  | 
						
						
							| 11 | 
							
								10 5
							 | 
							1unit | 
							⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  ( Unit ‘ 𝑅 ) )  | 
						
						
							| 12 | 
							
								10 2
							 | 
							unitnegcl | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  ( 1r ‘ 𝑅 )  ∈  ( Unit ‘ 𝑅 ) )  →  ( 𝑁 ‘ ( 1r ‘ 𝑅 ) )  ∈  ( Unit ‘ 𝑅 ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							mpdan | 
							⊢ ( 𝑅  ∈  Ring  →  ( 𝑁 ‘ ( 1r ‘ 𝑅 ) )  ∈  ( Unit ‘ 𝑅 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantr | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐼 )  →  ( 𝑁 ‘ ( 1r ‘ 𝑅 ) )  ∈  ( Unit ‘ 𝑅 ) )  | 
						
						
							| 15 | 
							
								1 10 4
							 | 
							irredrmul | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐼  ∧  ( 𝑁 ‘ ( 1r ‘ 𝑅 ) )  ∈  ( Unit ‘ 𝑅 ) )  →  ( 𝑋 ( .r ‘ 𝑅 ) ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) )  ∈  𝐼 )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							mpd3an3 | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐼 )  →  ( 𝑋 ( .r ‘ 𝑅 ) ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) )  ∈  𝐼 )  | 
						
						
							| 17 | 
							
								9 16
							 | 
							eqeltrrd | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐼 )  →  ( 𝑁 ‘ 𝑋 )  ∈  𝐼 )  |