| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							irredn0.i | 
							⊢ 𝐼  =  ( Irred ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							irredneg.n | 
							⊢ 𝑁  =  ( invg ‘ 𝑅 )  | 
						
						
							| 3 | 
							
								
							 | 
							irrednegb.b | 
							⊢ 𝐵  =  ( Base ‘ 𝑅 )  | 
						
						
							| 4 | 
							
								1 2
							 | 
							irredneg | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐼 )  →  ( 𝑁 ‘ 𝑋 )  ∈  𝐼 )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantlr | 
							⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  ∧  𝑋  ∈  𝐼 )  →  ( 𝑁 ‘ 𝑋 )  ∈  𝐼 )  | 
						
						
							| 6 | 
							
								
							 | 
							ringgrp | 
							⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Grp )  | 
						
						
							| 7 | 
							
								3 2
							 | 
							grpinvinv | 
							⊢ ( ( 𝑅  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) )  =  𝑋 )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							sylan | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) )  =  𝑋 )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁 ‘ 𝑋 )  ∈  𝐼 )  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) )  =  𝑋 )  | 
						
						
							| 10 | 
							
								1 2
							 | 
							irredneg | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑁 ‘ 𝑋 )  ∈  𝐼 )  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) )  ∈  𝐼 )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantlr | 
							⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁 ‘ 𝑋 )  ∈  𝐼 )  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) )  ∈  𝐼 )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							eqeltrrd | 
							⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁 ‘ 𝑋 )  ∈  𝐼 )  →  𝑋  ∈  𝐼 )  | 
						
						
							| 13 | 
							
								5 12
							 | 
							impbida | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  ∈  𝐼  ↔  ( 𝑁 ‘ 𝑋 )  ∈  𝐼 ) )  |