Metamath Proof Explorer


Theorem irrednu

Description: An irreducible element is not a unit. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses irredn0.i 𝐼 = ( Irred ‘ 𝑅 )
irrednu.u 𝑈 = ( Unit ‘ 𝑅 )
Assertion irrednu ( 𝑋𝐼 → ¬ 𝑋𝑈 )

Proof

Step Hyp Ref Expression
1 irredn0.i 𝐼 = ( Irred ‘ 𝑅 )
2 irrednu.u 𝑈 = ( Unit ‘ 𝑅 )
3 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
4 eqid ( .r𝑅 ) = ( .r𝑅 )
5 3 2 1 4 isirred2 ( 𝑋𝐼 ↔ ( 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ ¬ 𝑋𝑈 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r𝑅 ) 𝑦 ) = 𝑋 → ( 𝑥𝑈𝑦𝑈 ) ) ) )
6 5 simp2bi ( 𝑋𝐼 → ¬ 𝑋𝑈 )