| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0wlk.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | 1fv | ⊢ ( ( 𝑁  ∈  𝑉  ∧  𝑃  =  { 〈 0 ,  𝑁 〉 } )  →  ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 ) ) | 
						
							| 3 | 2 | ancoms | ⊢ ( ( 𝑃  =  { 〈 0 ,  𝑁 〉 }  ∧  𝑁  ∈  𝑉 )  →  ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉  ∧  ( 𝑃 ‘ 0 )  =  𝑁 ) ) | 
						
							| 4 | 3 | simpld | ⊢ ( ( 𝑃  =  { 〈 0 ,  𝑁 〉 }  ∧  𝑁  ∈  𝑉 )  →  𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) | 
						
							| 5 | 1 | 1vgrex | ⊢ ( 𝑁  ∈  𝑉  →  𝐺  ∈  V ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝑃  =  { 〈 0 ,  𝑁 〉 }  ∧  𝑁  ∈  𝑉 )  →  𝐺  ∈  V ) | 
						
							| 7 | 1 | 0wlk | ⊢ ( 𝐺  ∈  V  →  ( ∅ ( Walks ‘ 𝐺 ) 𝑃  ↔  𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( 𝑃  =  { 〈 0 ,  𝑁 〉 }  ∧  𝑁  ∈  𝑉 )  →  ( ∅ ( Walks ‘ 𝐺 ) 𝑃  ↔  𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) | 
						
							| 9 | 4 8 | mpbird | ⊢ ( ( 𝑃  =  { 〈 0 ,  𝑁 〉 }  ∧  𝑁  ∈  𝑉 )  →  ∅ ( Walks ‘ 𝐺 ) 𝑃 ) |