| Step | Hyp | Ref | Expression | 
						
							| 1 |  | is1stc.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | unieq | ⊢ ( 𝑗  =  𝐽  →  ∪  𝑗  =  ∪  𝐽 ) | 
						
							| 3 | 2 1 | eqtr4di | ⊢ ( 𝑗  =  𝐽  →  ∪  𝑗  =  𝑋 ) | 
						
							| 4 |  | pweq | ⊢ ( 𝑗  =  𝐽  →  𝒫  𝑗  =  𝒫  𝐽 ) | 
						
							| 5 |  | raleq | ⊢ ( 𝑗  =  𝐽  →  ( ∀ 𝑧  ∈  𝑗 ( 𝑥  ∈  𝑧  →  𝑥  ∈  ∪  ( 𝑦  ∩  𝒫  𝑧 ) )  ↔  ∀ 𝑧  ∈  𝐽 ( 𝑥  ∈  𝑧  →  𝑥  ∈  ∪  ( 𝑦  ∩  𝒫  𝑧 ) ) ) ) | 
						
							| 6 | 5 | anbi2d | ⊢ ( 𝑗  =  𝐽  →  ( ( 𝑦  ≼  ω  ∧  ∀ 𝑧  ∈  𝑗 ( 𝑥  ∈  𝑧  →  𝑥  ∈  ∪  ( 𝑦  ∩  𝒫  𝑧 ) ) )  ↔  ( 𝑦  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝑥  ∈  𝑧  →  𝑥  ∈  ∪  ( 𝑦  ∩  𝒫  𝑧 ) ) ) ) ) | 
						
							| 7 | 4 6 | rexeqbidv | ⊢ ( 𝑗  =  𝐽  →  ( ∃ 𝑦  ∈  𝒫  𝑗 ( 𝑦  ≼  ω  ∧  ∀ 𝑧  ∈  𝑗 ( 𝑥  ∈  𝑧  →  𝑥  ∈  ∪  ( 𝑦  ∩  𝒫  𝑧 ) ) )  ↔  ∃ 𝑦  ∈  𝒫  𝐽 ( 𝑦  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝑥  ∈  𝑧  →  𝑥  ∈  ∪  ( 𝑦  ∩  𝒫  𝑧 ) ) ) ) ) | 
						
							| 8 | 3 7 | raleqbidv | ⊢ ( 𝑗  =  𝐽  →  ( ∀ 𝑥  ∈  ∪  𝑗 ∃ 𝑦  ∈  𝒫  𝑗 ( 𝑦  ≼  ω  ∧  ∀ 𝑧  ∈  𝑗 ( 𝑥  ∈  𝑧  →  𝑥  ∈  ∪  ( 𝑦  ∩  𝒫  𝑧 ) ) )  ↔  ∀ 𝑥  ∈  𝑋 ∃ 𝑦  ∈  𝒫  𝐽 ( 𝑦  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝑥  ∈  𝑧  →  𝑥  ∈  ∪  ( 𝑦  ∩  𝒫  𝑧 ) ) ) ) ) | 
						
							| 9 |  | df-1stc | ⊢ 1stω  =  { 𝑗  ∈  Top  ∣  ∀ 𝑥  ∈  ∪  𝑗 ∃ 𝑦  ∈  𝒫  𝑗 ( 𝑦  ≼  ω  ∧  ∀ 𝑧  ∈  𝑗 ( 𝑥  ∈  𝑧  →  𝑥  ∈  ∪  ( 𝑦  ∩  𝒫  𝑧 ) ) ) } | 
						
							| 10 | 8 9 | elrab2 | ⊢ ( 𝐽  ∈  1stω  ↔  ( 𝐽  ∈  Top  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑦  ∈  𝒫  𝐽 ( 𝑦  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝑥  ∈  𝑧  →  𝑥  ∈  ∪  ( 𝑦  ∩  𝒫  𝑧 ) ) ) ) ) |