Step |
Hyp |
Ref |
Expression |
1 |
|
is1stc.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
1
|
is1stc |
⊢ ( 𝐽 ∈ 1stω ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) ) ) ) |
3 |
|
elin |
⊢ ( 𝑤 ∈ ( 𝑦 ∩ 𝒫 𝑧 ) ↔ ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝒫 𝑧 ) ) |
4 |
|
velpw |
⊢ ( 𝑤 ∈ 𝒫 𝑧 ↔ 𝑤 ⊆ 𝑧 ) |
5 |
4
|
anbi2i |
⊢ ( ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝒫 𝑧 ) ↔ ( 𝑤 ∈ 𝑦 ∧ 𝑤 ⊆ 𝑧 ) ) |
6 |
3 5
|
bitri |
⊢ ( 𝑤 ∈ ( 𝑦 ∩ 𝒫 𝑧 ) ↔ ( 𝑤 ∈ 𝑦 ∧ 𝑤 ⊆ 𝑧 ) ) |
7 |
6
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑦 ∩ 𝒫 𝑧 ) ) ↔ ( 𝑥 ∈ 𝑤 ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
8 |
|
an12 |
⊢ ( ( 𝑥 ∈ 𝑤 ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑤 ⊆ 𝑧 ) ) ↔ ( 𝑤 ∈ 𝑦 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
9 |
7 8
|
bitri |
⊢ ( ( 𝑥 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑦 ∩ 𝒫 𝑧 ) ) ↔ ( 𝑤 ∈ 𝑦 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
10 |
9
|
exbii |
⊢ ( ∃ 𝑤 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑦 ∩ 𝒫 𝑧 ) ) ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
11 |
|
eluni |
⊢ ( 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ↔ ∃ 𝑤 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑦 ∩ 𝒫 𝑧 ) ) ) |
12 |
|
df-rex |
⊢ ( ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
13 |
10 11 12
|
3bitr4i |
⊢ ( 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ↔ ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) |
14 |
13
|
imbi2i |
⊢ ( ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) ↔ ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
15 |
14
|
ralbii |
⊢ ( ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
16 |
15
|
anbi2i |
⊢ ( ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) ) ↔ ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
17 |
16
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) ) ↔ ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
18 |
17
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
19 |
18
|
anbi2i |
⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) ) ) ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
20 |
2 19
|
bitri |
⊢ ( 𝐽 ∈ 1stω ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |