| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-2ndc | ⊢ 2ndω  =  { 𝑗  ∣  ∃ 𝑥  ∈  TopBases ( 𝑥  ≼  ω  ∧  ( topGen ‘ 𝑥 )  =  𝑗 ) } | 
						
							| 2 | 1 | eleq2i | ⊢ ( 𝐽  ∈  2ndω  ↔  𝐽  ∈  { 𝑗  ∣  ∃ 𝑥  ∈  TopBases ( 𝑥  ≼  ω  ∧  ( topGen ‘ 𝑥 )  =  𝑗 ) } ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝑥  ≼  ω  ∧  ( topGen ‘ 𝑥 )  =  𝐽 )  →  ( topGen ‘ 𝑥 )  =  𝐽 ) | 
						
							| 4 |  | fvex | ⊢ ( topGen ‘ 𝑥 )  ∈  V | 
						
							| 5 | 3 4 | eqeltrrdi | ⊢ ( ( 𝑥  ≼  ω  ∧  ( topGen ‘ 𝑥 )  =  𝐽 )  →  𝐽  ∈  V ) | 
						
							| 6 | 5 | rexlimivw | ⊢ ( ∃ 𝑥  ∈  TopBases ( 𝑥  ≼  ω  ∧  ( topGen ‘ 𝑥 )  =  𝐽 )  →  𝐽  ∈  V ) | 
						
							| 7 |  | eqeq2 | ⊢ ( 𝑗  =  𝐽  →  ( ( topGen ‘ 𝑥 )  =  𝑗  ↔  ( topGen ‘ 𝑥 )  =  𝐽 ) ) | 
						
							| 8 | 7 | anbi2d | ⊢ ( 𝑗  =  𝐽  →  ( ( 𝑥  ≼  ω  ∧  ( topGen ‘ 𝑥 )  =  𝑗 )  ↔  ( 𝑥  ≼  ω  ∧  ( topGen ‘ 𝑥 )  =  𝐽 ) ) ) | 
						
							| 9 | 8 | rexbidv | ⊢ ( 𝑗  =  𝐽  →  ( ∃ 𝑥  ∈  TopBases ( 𝑥  ≼  ω  ∧  ( topGen ‘ 𝑥 )  =  𝑗 )  ↔  ∃ 𝑥  ∈  TopBases ( 𝑥  ≼  ω  ∧  ( topGen ‘ 𝑥 )  =  𝐽 ) ) ) | 
						
							| 10 | 6 9 | elab3 | ⊢ ( 𝐽  ∈  { 𝑗  ∣  ∃ 𝑥  ∈  TopBases ( 𝑥  ≼  ω  ∧  ( topGen ‘ 𝑥 )  =  𝑗 ) }  ↔  ∃ 𝑥  ∈  TopBases ( 𝑥  ≼  ω  ∧  ( topGen ‘ 𝑥 )  =  𝐽 ) ) | 
						
							| 11 | 2 10 | bitri | ⊢ ( 𝐽  ∈  2ndω  ↔  ∃ 𝑥  ∈  TopBases ( 𝑥  ≼  ω  ∧  ( topGen ‘ 𝑥 )  =  𝐽 ) ) |