Step |
Hyp |
Ref |
Expression |
1 |
|
df-2ndc |
⊢ 2ndω = { 𝑗 ∣ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝑗 ) } |
2 |
1
|
eleq2i |
⊢ ( 𝐽 ∈ 2ndω ↔ 𝐽 ∈ { 𝑗 ∣ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝑗 ) } ) |
3 |
|
simpr |
⊢ ( ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) → ( topGen ‘ 𝑥 ) = 𝐽 ) |
4 |
|
fvex |
⊢ ( topGen ‘ 𝑥 ) ∈ V |
5 |
3 4
|
eqeltrrdi |
⊢ ( ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) → 𝐽 ∈ V ) |
6 |
5
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) → 𝐽 ∈ V ) |
7 |
|
eqeq2 |
⊢ ( 𝑗 = 𝐽 → ( ( topGen ‘ 𝑥 ) = 𝑗 ↔ ( topGen ‘ 𝑥 ) = 𝐽 ) ) |
8 |
7
|
anbi2d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝑗 ) ↔ ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) ) ) |
9 |
8
|
rexbidv |
⊢ ( 𝑗 = 𝐽 → ( ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝑗 ) ↔ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) ) ) |
10 |
6 9
|
elab3 |
⊢ ( 𝐽 ∈ { 𝑗 ∣ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝑗 ) } ↔ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) ) |
11 |
2 10
|
bitri |
⊢ ( 𝐽 ∈ 2ndω ↔ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) ) |