Metamath Proof Explorer


Theorem isabl

Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011)

Ref Expression
Assertion isabl ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) )

Proof

Step Hyp Ref Expression
1 df-abl Abel = ( Grp ∩ CMnd )
2 1 elin2 ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) )