Metamath Proof Explorer


Theorem isabl2

Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011) (Revised by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses iscmn.b 𝐵 = ( Base ‘ 𝐺 )
iscmn.p + = ( +g𝐺 )
Assertion isabl2 ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 iscmn.b 𝐵 = ( Base ‘ 𝐺 )
2 iscmn.p + = ( +g𝐺 )
3 isabl ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) )
4 grpmnd ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd )
5 1 2 iscmn ( 𝐺 ∈ CMnd ↔ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) )
6 5 baib ( 𝐺 ∈ Mnd → ( 𝐺 ∈ CMnd ↔ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) )
7 4 6 syl ( 𝐺 ∈ Grp → ( 𝐺 ∈ CMnd ↔ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) )
8 7 pm5.32i ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) ↔ ( 𝐺 ∈ Grp ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) )
9 3 8 bitri ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) )