| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscmn.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
iscmn.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
isabl |
⊢ ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) ) |
| 4 |
|
grpmnd |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) |
| 5 |
1 2
|
iscmn |
⊢ ( 𝐺 ∈ CMnd ↔ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
| 6 |
5
|
baib |
⊢ ( 𝐺 ∈ Mnd → ( 𝐺 ∈ CMnd ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
| 7 |
4 6
|
syl |
⊢ ( 𝐺 ∈ Grp → ( 𝐺 ∈ CMnd ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
| 8 |
7
|
pm5.32i |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) ↔ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
| 9 |
3 8
|
bitri |
⊢ ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |