Metamath Proof Explorer


Theorem isabld

Description: Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013)

Ref Expression
Hypotheses isabld.b ( 𝜑𝐵 = ( Base ‘ 𝐺 ) )
isabld.p ( 𝜑+ = ( +g𝐺 ) )
isabld.g ( 𝜑𝐺 ∈ Grp )
isabld.c ( ( 𝜑𝑥𝐵𝑦𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) )
Assertion isabld ( 𝜑𝐺 ∈ Abel )

Proof

Step Hyp Ref Expression
1 isabld.b ( 𝜑𝐵 = ( Base ‘ 𝐺 ) )
2 isabld.p ( 𝜑+ = ( +g𝐺 ) )
3 isabld.g ( 𝜑𝐺 ∈ Grp )
4 isabld.c ( ( 𝜑𝑥𝐵𝑦𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) )
5 3 grpmndd ( 𝜑𝐺 ∈ Mnd )
6 1 2 5 4 iscmnd ( 𝜑𝐺 ∈ CMnd )
7 isabl ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) )
8 3 6 7 sylanbrc ( 𝜑𝐺 ∈ Abel )