Description: Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isabld.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) | |
| isabld.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝐺 ) ) | ||
| isabld.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| isabld.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) | ||
| Assertion | isabld | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabld.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) | |
| 2 | isabld.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝐺 ) ) | |
| 3 | isabld.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 4 | isabld.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) | |
| 5 | 3 | grpmndd | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 6 | 1 2 5 4 | iscmnd | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 7 | isabl | ⊢ ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) ) | |
| 8 | 3 6 7 | sylanbrc | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) |