Description: Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isabld.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) | |
isabld.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝐺 ) ) | ||
isabld.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
isabld.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) | ||
Assertion | isabld | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabld.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) | |
2 | isabld.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝐺 ) ) | |
3 | isabld.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
4 | isabld.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) | |
5 | 3 | grpmndd | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
6 | 1 2 5 4 | iscmnd | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
7 | isabl | ⊢ ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) ) | |
8 | 3 6 7 | sylanbrc | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) |