Description: Properties that determine an Abelian group. (Contributed by NM, 4-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isabli.g | ⊢ 𝐺 ∈ Grp | |
isabli.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
isabli.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
isabli.c | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) | ||
Assertion | isabli | ⊢ 𝐺 ∈ Abel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabli.g | ⊢ 𝐺 ∈ Grp | |
2 | isabli.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
3 | isabli.p | ⊢ + = ( +g ‘ 𝐺 ) | |
4 | isabli.c | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) | |
5 | 4 | rgen2 | ⊢ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) |
6 | 2 3 | isabl2 | ⊢ ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
7 | 1 5 6 | mpbir2an | ⊢ 𝐺 ∈ Abel |