Metamath Proof Explorer


Theorem isabli

Description: Properties that determine an Abelian group. (Contributed by NM, 4-Sep-2011)

Ref Expression
Hypotheses isabli.g 𝐺 ∈ Grp
isabli.b 𝐵 = ( Base ‘ 𝐺 )
isabli.p + = ( +g𝐺 )
isabli.c ( ( 𝑥𝐵𝑦𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) )
Assertion isabli 𝐺 ∈ Abel

Proof

Step Hyp Ref Expression
1 isabli.g 𝐺 ∈ Grp
2 isabli.b 𝐵 = ( Base ‘ 𝐺 )
3 isabli.p + = ( +g𝐺 )
4 isabli.c ( ( 𝑥𝐵𝑦𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) )
5 4 rgen2 𝑥𝐵𝑦𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 )
6 2 3 isabl2 ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) )
7 1 5 6 mpbir2an 𝐺 ∈ Abel