Step |
Hyp |
Ref |
Expression |
1 |
|
isabl.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
rneq |
⊢ ( 𝑔 = 𝐺 → ran 𝑔 = ran 𝐺 ) |
3 |
2 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ran 𝑔 = 𝑋 ) |
4 |
|
raleq |
⊢ ( ran 𝑔 = 𝑋 → ( ∀ 𝑦 ∈ ran 𝑔 ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 ) ) ) |
5 |
4
|
raleqbi1dv |
⊢ ( ran 𝑔 = 𝑋 → ( ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 ) ) ) |
6 |
3 5
|
syl |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 ) ) ) |
7 |
|
oveq |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 𝑔 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) |
8 |
|
oveq |
⊢ ( 𝑔 = 𝐺 → ( 𝑦 𝑔 𝑥 ) = ( 𝑦 𝐺 𝑥 ) ) |
9 |
7 8
|
eqeq12d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 ) ↔ ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) ) ) |
10 |
9
|
2ralbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) ) ) |
11 |
6 10
|
bitrd |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) ) ) |
12 |
|
df-ablo |
⊢ AbelOp = { 𝑔 ∈ GrpOp ∣ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 ) } |
13 |
11 12
|
elrab2 |
⊢ ( 𝐺 ∈ AbelOp ↔ ( 𝐺 ∈ GrpOp ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) ) ) |