Description: Properties that determine an Abelian group operation. (Contributed by NM, 5-Nov-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isabli.1 | ⊢ 𝐺 ∈ GrpOp | |
isabli.2 | ⊢ dom 𝐺 = ( 𝑋 × 𝑋 ) | ||
isabli.3 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) ) | ||
Assertion | isabloi | ⊢ 𝐺 ∈ AbelOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabli.1 | ⊢ 𝐺 ∈ GrpOp | |
2 | isabli.2 | ⊢ dom 𝐺 = ( 𝑋 × 𝑋 ) | |
3 | isabli.3 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) ) | |
4 | 3 | rgen2 | ⊢ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) |
5 | 1 2 | grporn | ⊢ 𝑋 = ran 𝐺 |
6 | 5 | isablo | ⊢ ( 𝐺 ∈ AbelOp ↔ ( 𝐺 ∈ GrpOp ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) ) ) |
7 | 1 4 6 | mpbir2an | ⊢ 𝐺 ∈ AbelOp |