Metamath Proof Explorer


Theorem isabloi

Description: Properties that determine an Abelian group operation. (Contributed by NM, 5-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses isabli.1 𝐺 ∈ GrpOp
isabli.2 dom 𝐺 = ( 𝑋 × 𝑋 )
isabli.3 ( ( 𝑥𝑋𝑦𝑋 ) → ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) )
Assertion isabloi 𝐺 ∈ AbelOp

Proof

Step Hyp Ref Expression
1 isabli.1 𝐺 ∈ GrpOp
2 isabli.2 dom 𝐺 = ( 𝑋 × 𝑋 )
3 isabli.3 ( ( 𝑥𝑋𝑦𝑋 ) → ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) )
4 3 rgen2 𝑥𝑋𝑦𝑋 ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 )
5 1 2 grporn 𝑋 = ran 𝐺
6 5 isablo ( 𝐺 ∈ AbelOp ↔ ( 𝐺 ∈ GrpOp ∧ ∀ 𝑥𝑋𝑦𝑋 ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) ) )
7 1 4 6 mpbir2an 𝐺 ∈ AbelOp