Description: Properties that determine an Abelian group operation. (Contributed by NM, 5-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isabli.1 | ⊢ 𝐺 ∈ GrpOp | |
| isabli.2 | ⊢ dom 𝐺 = ( 𝑋 × 𝑋 ) | ||
| isabli.3 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) ) | ||
| Assertion | isabloi | ⊢ 𝐺 ∈ AbelOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabli.1 | ⊢ 𝐺 ∈ GrpOp | |
| 2 | isabli.2 | ⊢ dom 𝐺 = ( 𝑋 × 𝑋 ) | |
| 3 | isabli.3 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) ) | |
| 4 | 3 | rgen2 | ⊢ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) |
| 5 | 1 2 | grporn | ⊢ 𝑋 = ran 𝐺 |
| 6 | 5 | isablo | ⊢ ( 𝐺 ∈ AbelOp ↔ ( 𝐺 ∈ GrpOp ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) ) ) |
| 7 | 1 4 6 | mpbir2an | ⊢ 𝐺 ∈ AbelOp |