| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abvfval.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) |
| 2 |
|
abvfval.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
abvfval.p |
⊢ + = ( +g ‘ 𝑅 ) |
| 4 |
|
abvfval.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 5 |
|
abvfval.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 6 |
1 2 3 4 5
|
abvfval |
⊢ ( 𝑅 ∈ Ring → 𝐴 = { 𝑓 ∈ ( ( 0 [,) +∞ ) ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } ) |
| 7 |
6
|
eleq2d |
⊢ ( 𝑅 ∈ Ring → ( 𝐹 ∈ 𝐴 ↔ 𝐹 ∈ { 𝑓 ∈ ( ( 0 [,) +∞ ) ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } ) ) |
| 8 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 9 |
8
|
eqeq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
| 10 |
9
|
bibi1d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ↔ ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) ) |
| 11 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ) |
| 12 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 13 |
8 12
|
oveq12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
| 14 |
11 13
|
eqeq12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 15 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ) |
| 16 |
8 12
|
oveq12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 17 |
15 16
|
breq12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 18 |
14 17
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 19 |
18
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 20 |
10 19
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) |
| 21 |
20
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) |
| 22 |
21
|
elrab |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( ( 0 [,) +∞ ) ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } ↔ ( 𝐹 ∈ ( ( 0 [,) +∞ ) ↑m 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) |
| 23 |
|
ovex |
⊢ ( 0 [,) +∞ ) ∈ V |
| 24 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
| 25 |
23 24
|
elmap |
⊢ ( 𝐹 ∈ ( ( 0 [,) +∞ ) ↑m 𝐵 ) ↔ 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ ) ) |
| 26 |
25
|
anbi1i |
⊢ ( ( 𝐹 ∈ ( ( 0 [,) +∞ ) ↑m 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ↔ ( 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) |
| 27 |
22 26
|
bitri |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( ( 0 [,) +∞ ) ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } ↔ ( 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) |
| 28 |
7 27
|
bitrdi |
⊢ ( 𝑅 ∈ Ring → ( 𝐹 ∈ 𝐴 ↔ ( 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) ) |