| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abvfval.a | ⊢ 𝐴  =  ( AbsVal ‘ 𝑅 ) | 
						
							| 2 |  | abvfval.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | abvfval.p | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 4 |  | abvfval.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 5 |  | abvfval.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 6 | 1 2 3 4 5 | abvfval | ⊢ ( 𝑅  ∈  Ring  →  𝐴  =  { 𝑓  ∈  ( ( 0 [,) +∞ )  ↑m  𝐵 )  ∣  ∀ 𝑥  ∈  𝐵 ( ( ( 𝑓 ‘ 𝑥 )  =  0  ↔  𝑥  =   0  )  ∧  ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ·  ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  ≤  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑓 ‘ 𝑦 ) ) ) ) } ) | 
						
							| 7 | 6 | eleq2d | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐹  ∈  𝐴  ↔  𝐹  ∈  { 𝑓  ∈  ( ( 0 [,) +∞ )  ↑m  𝐵 )  ∣  ∀ 𝑥  ∈  𝐵 ( ( ( 𝑓 ‘ 𝑥 )  =  0  ↔  𝑥  =   0  )  ∧  ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ·  ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  ≤  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑓 ‘ 𝑦 ) ) ) ) } ) ) | 
						
							| 8 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 9 | 8 | eqeq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘ 𝑥 )  =  0  ↔  ( 𝐹 ‘ 𝑥 )  =  0 ) ) | 
						
							| 10 | 9 | bibi1d | ⊢ ( 𝑓  =  𝐹  →  ( ( ( 𝑓 ‘ 𝑥 )  =  0  ↔  𝑥  =   0  )  ↔  ( ( 𝐹 ‘ 𝑥 )  =  0  ↔  𝑥  =   0  ) ) ) | 
						
							| 11 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) ) ) | 
						
							| 12 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 13 | 8 12 | oveq12d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘ 𝑥 )  ·  ( 𝑓 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 14 | 11 13 | eqeq12d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ·  ( 𝑓 ‘ 𝑦 ) )  ↔  ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 15 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  =  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) ) ) | 
						
							| 16 | 8 12 | oveq12d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑓 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 17 | 15 16 | breq12d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  ≤  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑓 ‘ 𝑦 ) )  ↔  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  ≤  ( ( 𝐹 ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 18 | 14 17 | anbi12d | ⊢ ( 𝑓  =  𝐹  →  ( ( ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ·  ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  ≤  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑓 ‘ 𝑦 ) ) )  ↔  ( ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  ≤  ( ( 𝐹 ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 19 | 18 | ralbidv | ⊢ ( 𝑓  =  𝐹  →  ( ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ·  ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  ≤  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑓 ‘ 𝑦 ) ) )  ↔  ∀ 𝑦  ∈  𝐵 ( ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  ≤  ( ( 𝐹 ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 20 | 10 19 | anbi12d | ⊢ ( 𝑓  =  𝐹  →  ( ( ( ( 𝑓 ‘ 𝑥 )  =  0  ↔  𝑥  =   0  )  ∧  ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ·  ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  ≤  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑓 ‘ 𝑦 ) ) ) )  ↔  ( ( ( 𝐹 ‘ 𝑥 )  =  0  ↔  𝑥  =   0  )  ∧  ∀ 𝑦  ∈  𝐵 ( ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  ≤  ( ( 𝐹 ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 21 | 20 | ralbidv | ⊢ ( 𝑓  =  𝐹  →  ( ∀ 𝑥  ∈  𝐵 ( ( ( 𝑓 ‘ 𝑥 )  =  0  ↔  𝑥  =   0  )  ∧  ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ·  ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  ≤  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑓 ‘ 𝑦 ) ) ) )  ↔  ∀ 𝑥  ∈  𝐵 ( ( ( 𝐹 ‘ 𝑥 )  =  0  ↔  𝑥  =   0  )  ∧  ∀ 𝑦  ∈  𝐵 ( ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  ≤  ( ( 𝐹 ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 22 | 21 | elrab | ⊢ ( 𝐹  ∈  { 𝑓  ∈  ( ( 0 [,) +∞ )  ↑m  𝐵 )  ∣  ∀ 𝑥  ∈  𝐵 ( ( ( 𝑓 ‘ 𝑥 )  =  0  ↔  𝑥  =   0  )  ∧  ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ·  ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  ≤  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑓 ‘ 𝑦 ) ) ) ) }  ↔  ( 𝐹  ∈  ( ( 0 [,) +∞ )  ↑m  𝐵 )  ∧  ∀ 𝑥  ∈  𝐵 ( ( ( 𝐹 ‘ 𝑥 )  =  0  ↔  𝑥  =   0  )  ∧  ∀ 𝑦  ∈  𝐵 ( ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  ≤  ( ( 𝐹 ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 23 |  | ovex | ⊢ ( 0 [,) +∞ )  ∈  V | 
						
							| 24 | 2 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 25 | 23 24 | elmap | ⊢ ( 𝐹  ∈  ( ( 0 [,) +∞ )  ↑m  𝐵 )  ↔  𝐹 : 𝐵 ⟶ ( 0 [,) +∞ ) ) | 
						
							| 26 | 25 | anbi1i | ⊢ ( ( 𝐹  ∈  ( ( 0 [,) +∞ )  ↑m  𝐵 )  ∧  ∀ 𝑥  ∈  𝐵 ( ( ( 𝐹 ‘ 𝑥 )  =  0  ↔  𝑥  =   0  )  ∧  ∀ 𝑦  ∈  𝐵 ( ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  ≤  ( ( 𝐹 ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑦 ) ) ) ) )  ↔  ( 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ )  ∧  ∀ 𝑥  ∈  𝐵 ( ( ( 𝐹 ‘ 𝑥 )  =  0  ↔  𝑥  =   0  )  ∧  ∀ 𝑦  ∈  𝐵 ( ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  ≤  ( ( 𝐹 ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 27 | 22 26 | bitri | ⊢ ( 𝐹  ∈  { 𝑓  ∈  ( ( 0 [,) +∞ )  ↑m  𝐵 )  ∣  ∀ 𝑥  ∈  𝐵 ( ( ( 𝑓 ‘ 𝑥 )  =  0  ↔  𝑥  =   0  )  ∧  ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ·  ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥  +  𝑦 ) )  ≤  ( ( 𝑓 ‘ 𝑥 )  +  ( 𝑓 ‘ 𝑦 ) ) ) ) }  ↔  ( 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ )  ∧  ∀ 𝑥  ∈  𝐵 ( ( ( 𝐹 ‘ 𝑥 )  =  0  ↔  𝑥  =   0  )  ∧  ∀ 𝑦  ∈  𝐵 ( ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  ≤  ( ( 𝐹 ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 28 | 7 27 | bitrdi | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐹  ∈  𝐴  ↔  ( 𝐹 : 𝐵 ⟶ ( 0 [,) +∞ )  ∧  ∀ 𝑥  ∈  𝐵 ( ( ( 𝐹 ‘ 𝑥 )  =  0  ↔  𝑥  =   0  )  ∧  ∀ 𝑦  ∈  𝐵 ( ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  ≤  ( ( 𝐹 ‘ 𝑥 )  +  ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) ) |