| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pweq | ⊢ ( 𝑦  =  𝑋  →  𝒫  𝑦  =  𝒫  𝑋 ) | 
						
							| 2 | 1 | difeq1d | ⊢ ( 𝑦  =  𝑋  →  ( 𝒫  𝑦  ∖  { ∅ } )  =  ( 𝒫  𝑋  ∖  { ∅ } ) ) | 
						
							| 3 | 2 | oveq1d | ⊢ ( 𝑦  =  𝑋  →  ( ( 𝒫  𝑦  ∖  { ∅ } )  ↑m  𝐴 )  =  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) ) | 
						
							| 4 | 3 | raleqdv | ⊢ ( 𝑦  =  𝑋  →  ( ∀ 𝑓  ∈  ( ( 𝒫  𝑦  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 )  ↔  ∀ 𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 5 | 4 | anbi2d | ⊢ ( 𝑦  =  𝑋  →  ( ( 𝐴  ∈  V  ∧  ∀ 𝑓  ∈  ( ( 𝒫  𝑦  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) )  ↔  ( 𝐴  ∈  V  ∧  ∀ 𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) ) ) ) | 
						
							| 6 |  | df-acn | ⊢ AC  𝐴  =  { 𝑦  ∣  ( 𝐴  ∈  V  ∧  ∀ 𝑓  ∈  ( ( 𝒫  𝑦  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) ) } | 
						
							| 7 | 5 6 | elab2g | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑋  ∈  AC  𝐴  ↔  ( 𝐴  ∈  V  ∧  ∀ 𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) ) ) ) | 
						
							| 8 |  | elex | ⊢ ( 𝐴  ∈  𝑊  →  𝐴  ∈  V ) | 
						
							| 9 |  | biid | ⊢ ( ( 𝐴  ∈  V  ∧  ∀ 𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) )  ↔  ( 𝐴  ∈  V  ∧  ∀ 𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 10 | 9 | baib | ⊢ ( 𝐴  ∈  V  →  ( ( 𝐴  ∈  V  ∧  ∀ 𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) )  ↔  ∀ 𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 11 | 8 10 | syl | ⊢ ( 𝐴  ∈  𝑊  →  ( ( 𝐴  ∈  V  ∧  ∀ 𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) )  ↔  ∀ 𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 12 | 7 11 | sylan9bb | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑊 )  →  ( 𝑋  ∈  AC  𝐴  ↔  ∀ 𝑓  ∈  ( ( 𝒫  𝑋  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑥  ∈  𝐴 ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑓 ‘ 𝑥 ) ) ) |