| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssrab2 | ⊢ { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 }  ⊆  𝒫  𝑋 | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  →  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 }  ⊆  𝒫  𝑋 ) | 
						
							| 3 |  | pweq | ⊢ ( 𝑠  =  ( 𝑋  ∩  ∩  𝑡 )  →  𝒫  𝑠  =  𝒫  ( 𝑋  ∩  ∩  𝑡 ) ) | 
						
							| 4 | 3 | ineq1d | ⊢ ( 𝑠  =  ( 𝑋  ∩  ∩  𝑡 )  →  ( 𝒫  𝑠  ∩  Fin )  =  ( 𝒫  ( 𝑋  ∩  ∩  𝑡 )  ∩  Fin ) ) | 
						
							| 5 | 4 | imaeq2d | ⊢ ( 𝑠  =  ( 𝑋  ∩  ∩  𝑡 )  →  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  =  ( 𝐹  “  ( 𝒫  ( 𝑋  ∩  ∩  𝑡 )  ∩  Fin ) ) ) | 
						
							| 6 | 5 | unieqd | ⊢ ( 𝑠  =  ( 𝑋  ∩  ∩  𝑡 )  →  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  =  ∪  ( 𝐹  “  ( 𝒫  ( 𝑋  ∩  ∩  𝑡 )  ∩  Fin ) ) ) | 
						
							| 7 |  | id | ⊢ ( 𝑠  =  ( 𝑋  ∩  ∩  𝑡 )  →  𝑠  =  ( 𝑋  ∩  ∩  𝑡 ) ) | 
						
							| 8 | 6 7 | sseq12d | ⊢ ( 𝑠  =  ( 𝑋  ∩  ∩  𝑡 )  →  ( ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠  ↔  ∪  ( 𝐹  “  ( 𝒫  ( 𝑋  ∩  ∩  𝑡 )  ∩  Fin ) )  ⊆  ( 𝑋  ∩  ∩  𝑡 ) ) ) | 
						
							| 9 |  | inss1 | ⊢ ( 𝑋  ∩  ∩  𝑡 )  ⊆  𝑋 | 
						
							| 10 |  | elpw2g | ⊢ ( 𝑋  ∈  𝑉  →  ( ( 𝑋  ∩  ∩  𝑡 )  ∈  𝒫  𝑋  ↔  ( 𝑋  ∩  ∩  𝑡 )  ⊆  𝑋 ) ) | 
						
							| 11 | 9 10 | mpbiri | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑋  ∩  ∩  𝑡 )  ∈  𝒫  𝑋 ) | 
						
							| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  ∧  𝑡  ⊆  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 } )  →  ( 𝑋  ∩  ∩  𝑡 )  ∈  𝒫  𝑋 ) | 
						
							| 13 |  | imassrn | ⊢ ( 𝐹  “  ( 𝒫  ( 𝑋  ∩  ∩  𝑡 )  ∩  Fin ) )  ⊆  ran  𝐹 | 
						
							| 14 |  | frn | ⊢ ( 𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋  →  ran  𝐹  ⊆  𝒫  𝑋 ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  →  ran  𝐹  ⊆  𝒫  𝑋 ) | 
						
							| 16 | 13 15 | sstrid | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  →  ( 𝐹  “  ( 𝒫  ( 𝑋  ∩  ∩  𝑡 )  ∩  Fin ) )  ⊆  𝒫  𝑋 ) | 
						
							| 17 | 16 | unissd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  →  ∪  ( 𝐹  “  ( 𝒫  ( 𝑋  ∩  ∩  𝑡 )  ∩  Fin ) )  ⊆  ∪  𝒫  𝑋 ) | 
						
							| 18 |  | unipw | ⊢ ∪  𝒫  𝑋  =  𝑋 | 
						
							| 19 | 17 18 | sseqtrdi | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  →  ∪  ( 𝐹  “  ( 𝒫  ( 𝑋  ∩  ∩  𝑡 )  ∩  Fin ) )  ⊆  𝑋 ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  ∧  𝑡  ⊆  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 } )  →  ∪  ( 𝐹  “  ( 𝒫  ( 𝑋  ∩  ∩  𝑡 )  ∩  Fin ) )  ⊆  𝑋 ) | 
						
							| 21 |  | inss2 | ⊢ ( 𝑋  ∩  ∩  𝑡 )  ⊆  ∩  𝑡 | 
						
							| 22 |  | intss1 | ⊢ ( 𝑎  ∈  𝑡  →  ∩  𝑡  ⊆  𝑎 ) | 
						
							| 23 | 21 22 | sstrid | ⊢ ( 𝑎  ∈  𝑡  →  ( 𝑋  ∩  ∩  𝑡 )  ⊆  𝑎 ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  ∧  𝑡  ⊆  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 } )  ∧  𝑎  ∈  𝑡 )  →  ( 𝑋  ∩  ∩  𝑡 )  ⊆  𝑎 ) | 
						
							| 25 | 24 | sspwd | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  ∧  𝑡  ⊆  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 } )  ∧  𝑎  ∈  𝑡 )  →  𝒫  ( 𝑋  ∩  ∩  𝑡 )  ⊆  𝒫  𝑎 ) | 
						
							| 26 | 25 | ssrind | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  ∧  𝑡  ⊆  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 } )  ∧  𝑎  ∈  𝑡 )  →  ( 𝒫  ( 𝑋  ∩  ∩  𝑡 )  ∩  Fin )  ⊆  ( 𝒫  𝑎  ∩  Fin ) ) | 
						
							| 27 |  | imass2 | ⊢ ( ( 𝒫  ( 𝑋  ∩  ∩  𝑡 )  ∩  Fin )  ⊆  ( 𝒫  𝑎  ∩  Fin )  →  ( 𝐹  “  ( 𝒫  ( 𝑋  ∩  ∩  𝑡 )  ∩  Fin ) )  ⊆  ( 𝐹  “  ( 𝒫  𝑎  ∩  Fin ) ) ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  ∧  𝑡  ⊆  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 } )  ∧  𝑎  ∈  𝑡 )  →  ( 𝐹  “  ( 𝒫  ( 𝑋  ∩  ∩  𝑡 )  ∩  Fin ) )  ⊆  ( 𝐹  “  ( 𝒫  𝑎  ∩  Fin ) ) ) | 
						
							| 29 | 28 | unissd | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  ∧  𝑡  ⊆  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 } )  ∧  𝑎  ∈  𝑡 )  →  ∪  ( 𝐹  “  ( 𝒫  ( 𝑋  ∩  ∩  𝑡 )  ∩  Fin ) )  ⊆  ∪  ( 𝐹  “  ( 𝒫  𝑎  ∩  Fin ) ) ) | 
						
							| 30 |  | ssel2 | ⊢ ( ( 𝑡  ⊆  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 }  ∧  𝑎  ∈  𝑡 )  →  𝑎  ∈  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 } ) | 
						
							| 31 |  | pweq | ⊢ ( 𝑠  =  𝑎  →  𝒫  𝑠  =  𝒫  𝑎 ) | 
						
							| 32 | 31 | ineq1d | ⊢ ( 𝑠  =  𝑎  →  ( 𝒫  𝑠  ∩  Fin )  =  ( 𝒫  𝑎  ∩  Fin ) ) | 
						
							| 33 | 32 | imaeq2d | ⊢ ( 𝑠  =  𝑎  →  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  =  ( 𝐹  “  ( 𝒫  𝑎  ∩  Fin ) ) ) | 
						
							| 34 | 33 | unieqd | ⊢ ( 𝑠  =  𝑎  →  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  =  ∪  ( 𝐹  “  ( 𝒫  𝑎  ∩  Fin ) ) ) | 
						
							| 35 |  | id | ⊢ ( 𝑠  =  𝑎  →  𝑠  =  𝑎 ) | 
						
							| 36 | 34 35 | sseq12d | ⊢ ( 𝑠  =  𝑎  →  ( ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠  ↔  ∪  ( 𝐹  “  ( 𝒫  𝑎  ∩  Fin ) )  ⊆  𝑎 ) ) | 
						
							| 37 | 36 | elrab | ⊢ ( 𝑎  ∈  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 }  ↔  ( 𝑎  ∈  𝒫  𝑋  ∧  ∪  ( 𝐹  “  ( 𝒫  𝑎  ∩  Fin ) )  ⊆  𝑎 ) ) | 
						
							| 38 | 37 | simprbi | ⊢ ( 𝑎  ∈  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 }  →  ∪  ( 𝐹  “  ( 𝒫  𝑎  ∩  Fin ) )  ⊆  𝑎 ) | 
						
							| 39 | 30 38 | syl | ⊢ ( ( 𝑡  ⊆  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 }  ∧  𝑎  ∈  𝑡 )  →  ∪  ( 𝐹  “  ( 𝒫  𝑎  ∩  Fin ) )  ⊆  𝑎 ) | 
						
							| 40 | 39 | adantll | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  ∧  𝑡  ⊆  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 } )  ∧  𝑎  ∈  𝑡 )  →  ∪  ( 𝐹  “  ( 𝒫  𝑎  ∩  Fin ) )  ⊆  𝑎 ) | 
						
							| 41 | 29 40 | sstrd | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  ∧  𝑡  ⊆  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 } )  ∧  𝑎  ∈  𝑡 )  →  ∪  ( 𝐹  “  ( 𝒫  ( 𝑋  ∩  ∩  𝑡 )  ∩  Fin ) )  ⊆  𝑎 ) | 
						
							| 42 | 41 | ralrimiva | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  ∧  𝑡  ⊆  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 } )  →  ∀ 𝑎  ∈  𝑡 ∪  ( 𝐹  “  ( 𝒫  ( 𝑋  ∩  ∩  𝑡 )  ∩  Fin ) )  ⊆  𝑎 ) | 
						
							| 43 |  | ssint | ⊢ ( ∪  ( 𝐹  “  ( 𝒫  ( 𝑋  ∩  ∩  𝑡 )  ∩  Fin ) )  ⊆  ∩  𝑡  ↔  ∀ 𝑎  ∈  𝑡 ∪  ( 𝐹  “  ( 𝒫  ( 𝑋  ∩  ∩  𝑡 )  ∩  Fin ) )  ⊆  𝑎 ) | 
						
							| 44 | 42 43 | sylibr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  ∧  𝑡  ⊆  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 } )  →  ∪  ( 𝐹  “  ( 𝒫  ( 𝑋  ∩  ∩  𝑡 )  ∩  Fin ) )  ⊆  ∩  𝑡 ) | 
						
							| 45 | 20 44 | ssind | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  ∧  𝑡  ⊆  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 } )  →  ∪  ( 𝐹  “  ( 𝒫  ( 𝑋  ∩  ∩  𝑡 )  ∩  Fin ) )  ⊆  ( 𝑋  ∩  ∩  𝑡 ) ) | 
						
							| 46 | 8 12 45 | elrabd | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  ∧  𝑡  ⊆  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 } )  →  ( 𝑋  ∩  ∩  𝑡 )  ∈  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 } ) | 
						
							| 47 | 2 46 | ismred2 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  →  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 }  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 48 |  | fssxp | ⊢ ( 𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋  →  𝐹  ⊆  ( 𝒫  𝑋  ×  𝒫  𝑋 ) ) | 
						
							| 49 |  | pwexg | ⊢ ( 𝑋  ∈  𝑉  →  𝒫  𝑋  ∈  V ) | 
						
							| 50 | 49 49 | xpexd | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝒫  𝑋  ×  𝒫  𝑋 )  ∈  V ) | 
						
							| 51 |  | ssexg | ⊢ ( ( 𝐹  ⊆  ( 𝒫  𝑋  ×  𝒫  𝑋 )  ∧  ( 𝒫  𝑋  ×  𝒫  𝑋 )  ∈  V )  →  𝐹  ∈  V ) | 
						
							| 52 | 48 50 51 | syl2anr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  →  𝐹  ∈  V ) | 
						
							| 53 |  | simpr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  →  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 ) | 
						
							| 54 |  | pweq | ⊢ ( 𝑠  =  𝑡  →  𝒫  𝑠  =  𝒫  𝑡 ) | 
						
							| 55 | 54 | ineq1d | ⊢ ( 𝑠  =  𝑡  →  ( 𝒫  𝑠  ∩  Fin )  =  ( 𝒫  𝑡  ∩  Fin ) ) | 
						
							| 56 | 55 | imaeq2d | ⊢ ( 𝑠  =  𝑡  →  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  =  ( 𝐹  “  ( 𝒫  𝑡  ∩  Fin ) ) ) | 
						
							| 57 | 56 | unieqd | ⊢ ( 𝑠  =  𝑡  →  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  =  ∪  ( 𝐹  “  ( 𝒫  𝑡  ∩  Fin ) ) ) | 
						
							| 58 |  | id | ⊢ ( 𝑠  =  𝑡  →  𝑠  =  𝑡 ) | 
						
							| 59 | 57 58 | sseq12d | ⊢ ( 𝑠  =  𝑡  →  ( ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠  ↔  ∪  ( 𝐹  “  ( 𝒫  𝑡  ∩  Fin ) )  ⊆  𝑡 ) ) | 
						
							| 60 | 59 | elrab3 | ⊢ ( 𝑡  ∈  𝒫  𝑋  →  ( 𝑡  ∈  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 }  ↔  ∪  ( 𝐹  “  ( 𝒫  𝑡  ∩  Fin ) )  ⊆  𝑡 ) ) | 
						
							| 61 | 60 | rgen | ⊢ ∀ 𝑡  ∈  𝒫  𝑋 ( 𝑡  ∈  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 }  ↔  ∪  ( 𝐹  “  ( 𝒫  𝑡  ∩  Fin ) )  ⊆  𝑡 ) | 
						
							| 62 | 53 61 | jctir | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  →  ( 𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋  ∧  ∀ 𝑡  ∈  𝒫  𝑋 ( 𝑡  ∈  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 }  ↔  ∪  ( 𝐹  “  ( 𝒫  𝑡  ∩  Fin ) )  ⊆  𝑡 ) ) ) | 
						
							| 63 |  | feq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 : 𝒫  𝑋 ⟶ 𝒫  𝑋  ↔  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 ) ) | 
						
							| 64 |  | imaeq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓  “  ( 𝒫  𝑡  ∩  Fin ) )  =  ( 𝐹  “  ( 𝒫  𝑡  ∩  Fin ) ) ) | 
						
							| 65 | 64 | unieqd | ⊢ ( 𝑓  =  𝐹  →  ∪  ( 𝑓  “  ( 𝒫  𝑡  ∩  Fin ) )  =  ∪  ( 𝐹  “  ( 𝒫  𝑡  ∩  Fin ) ) ) | 
						
							| 66 | 65 | sseq1d | ⊢ ( 𝑓  =  𝐹  →  ( ∪  ( 𝑓  “  ( 𝒫  𝑡  ∩  Fin ) )  ⊆  𝑡  ↔  ∪  ( 𝐹  “  ( 𝒫  𝑡  ∩  Fin ) )  ⊆  𝑡 ) ) | 
						
							| 67 | 66 | bibi2d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑡  ∈  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 }  ↔  ∪  ( 𝑓  “  ( 𝒫  𝑡  ∩  Fin ) )  ⊆  𝑡 )  ↔  ( 𝑡  ∈  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 }  ↔  ∪  ( 𝐹  “  ( 𝒫  𝑡  ∩  Fin ) )  ⊆  𝑡 ) ) ) | 
						
							| 68 | 67 | ralbidv | ⊢ ( 𝑓  =  𝐹  →  ( ∀ 𝑡  ∈  𝒫  𝑋 ( 𝑡  ∈  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 }  ↔  ∪  ( 𝑓  “  ( 𝒫  𝑡  ∩  Fin ) )  ⊆  𝑡 )  ↔  ∀ 𝑡  ∈  𝒫  𝑋 ( 𝑡  ∈  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 }  ↔  ∪  ( 𝐹  “  ( 𝒫  𝑡  ∩  Fin ) )  ⊆  𝑡 ) ) ) | 
						
							| 69 | 63 68 | anbi12d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 : 𝒫  𝑋 ⟶ 𝒫  𝑋  ∧  ∀ 𝑡  ∈  𝒫  𝑋 ( 𝑡  ∈  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 }  ↔  ∪  ( 𝑓  “  ( 𝒫  𝑡  ∩  Fin ) )  ⊆  𝑡 ) )  ↔  ( 𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋  ∧  ∀ 𝑡  ∈  𝒫  𝑋 ( 𝑡  ∈  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 }  ↔  ∪  ( 𝐹  “  ( 𝒫  𝑡  ∩  Fin ) )  ⊆  𝑡 ) ) ) ) | 
						
							| 70 | 52 62 69 | spcedv | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  →  ∃ 𝑓 ( 𝑓 : 𝒫  𝑋 ⟶ 𝒫  𝑋  ∧  ∀ 𝑡  ∈  𝒫  𝑋 ( 𝑡  ∈  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 }  ↔  ∪  ( 𝑓  “  ( 𝒫  𝑡  ∩  Fin ) )  ⊆  𝑡 ) ) ) | 
						
							| 71 |  | isacs | ⊢ ( { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 }  ∈  ( ACS ‘ 𝑋 )  ↔  ( { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 }  ∈  ( Moore ‘ 𝑋 )  ∧  ∃ 𝑓 ( 𝑓 : 𝒫  𝑋 ⟶ 𝒫  𝑋  ∧  ∀ 𝑡  ∈  𝒫  𝑋 ( 𝑡  ∈  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 }  ↔  ∪  ( 𝑓  “  ( 𝒫  𝑡  ∩  Fin ) )  ⊆  𝑡 ) ) ) ) | 
						
							| 72 | 47 70 71 | sylanbrc | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐹 : 𝒫  𝑋 ⟶ 𝒫  𝑋 )  →  { 𝑠  ∈  𝒫  𝑋  ∣  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) )  ⊆  𝑠 }  ∈  ( ACS ‘ 𝑋 ) ) |