Step |
Hyp |
Ref |
Expression |
1 |
|
isacs2.f |
⊢ 𝐹 = ( mrCls ‘ 𝐶 ) |
2 |
|
isacs |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ) ) ) |
3 |
|
ffun |
⊢ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 → Fun 𝑓 ) |
4 |
|
funiunfv |
⊢ ( Fun 𝑓 → ∪ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) = ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ) |
5 |
3 4
|
syl |
⊢ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 → ∪ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) = ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ) |
6 |
5
|
sseq1d |
⊢ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 → ( ∪ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ) |
7 |
|
iunss |
⊢ ( ∪ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) |
8 |
6 7
|
bitr3di |
⊢ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 → ( ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) |
9 |
8
|
bibi2d |
⊢ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 → ( ( 𝑡 ∈ 𝐶 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ↔ ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) |
10 |
9
|
ralbidv |
⊢ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 → ( ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ↔ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) |
11 |
10
|
pm5.32i |
⊢ ( ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ) ↔ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) |
12 |
11
|
exbii |
⊢ ( ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ) ↔ ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) |
13 |
|
simpll |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
14 |
|
elinel1 |
⊢ ( 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) → 𝑦 ∈ 𝒫 𝑠 ) |
15 |
14
|
elpwid |
⊢ ( 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) → 𝑦 ⊆ 𝑠 ) |
16 |
15
|
adantl |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → 𝑦 ⊆ 𝑠 ) |
17 |
|
simplr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → 𝑠 ∈ 𝐶 ) |
18 |
1
|
mrcsscl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑠 ∧ 𝑠 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) |
19 |
13 16 17 18
|
syl3anc |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) |
20 |
19
|
ralrimiva |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝐶 ) → ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) |
21 |
20
|
ad4ant14 |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑠 ∈ 𝐶 ) → ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) |
22 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑦 ) ) |
23 |
22
|
sseq1d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑓 ‘ 𝑧 ) ⊆ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) ) |
24 |
|
simplll |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
25 |
15
|
adantl |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → 𝑦 ⊆ 𝑠 ) |
26 |
|
elpwi |
⊢ ( 𝑠 ∈ 𝒫 𝑋 → 𝑠 ⊆ 𝑋 ) |
27 |
26
|
ad2antlr |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → 𝑠 ⊆ 𝑋 ) |
28 |
25 27
|
sstrd |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → 𝑦 ⊆ 𝑋 ) |
29 |
1
|
mrccl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ) |
30 |
24 28 29
|
syl2anc |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ) |
31 |
|
eleq1 |
⊢ ( 𝑡 = ( 𝐹 ‘ 𝑦 ) → ( 𝑡 ∈ 𝐶 ↔ ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ) ) |
32 |
|
pweq |
⊢ ( 𝑡 = ( 𝐹 ‘ 𝑦 ) → 𝒫 𝑡 = 𝒫 ( 𝐹 ‘ 𝑦 ) ) |
33 |
32
|
ineq1d |
⊢ ( 𝑡 = ( 𝐹 ‘ 𝑦 ) → ( 𝒫 𝑡 ∩ Fin ) = ( 𝒫 ( 𝐹 ‘ 𝑦 ) ∩ Fin ) ) |
34 |
|
sseq2 |
⊢ ( 𝑡 = ( 𝐹 ‘ 𝑦 ) → ( ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ↔ ( 𝑓 ‘ 𝑧 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) ) |
35 |
33 34
|
raleqbidv |
⊢ ( 𝑡 = ( 𝐹 ‘ 𝑦 ) → ( ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ↔ ∀ 𝑧 ∈ ( 𝒫 ( 𝐹 ‘ 𝑦 ) ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) ) |
36 |
31 35
|
bibi12d |
⊢ ( 𝑡 = ( 𝐹 ‘ 𝑦 ) → ( ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 ( 𝐹 ‘ 𝑦 ) ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) ) ) |
37 |
|
simprr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) → ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) |
38 |
37
|
ad2antrr |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) |
39 |
|
mresspw |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 ⊆ 𝒫 𝑋 ) |
40 |
39
|
ad3antrrr |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → 𝐶 ⊆ 𝒫 𝑋 ) |
41 |
40 30
|
sseldd |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝒫 𝑋 ) |
42 |
36 38 41
|
rspcdva |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 ( 𝐹 ‘ 𝑦 ) ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) ) |
43 |
30 42
|
mpbid |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → ∀ 𝑧 ∈ ( 𝒫 ( 𝐹 ‘ 𝑦 ) ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) |
44 |
24 1 28
|
mrcssidd |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → 𝑦 ⊆ ( 𝐹 ‘ 𝑦 ) ) |
45 |
|
vex |
⊢ 𝑦 ∈ V |
46 |
45
|
elpw |
⊢ ( 𝑦 ∈ 𝒫 ( 𝐹 ‘ 𝑦 ) ↔ 𝑦 ⊆ ( 𝐹 ‘ 𝑦 ) ) |
47 |
44 46
|
sylibr |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → 𝑦 ∈ 𝒫 ( 𝐹 ‘ 𝑦 ) ) |
48 |
|
elinel2 |
⊢ ( 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) → 𝑦 ∈ Fin ) |
49 |
48
|
adantl |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → 𝑦 ∈ Fin ) |
50 |
47 49
|
elind |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → 𝑦 ∈ ( 𝒫 ( 𝐹 ‘ 𝑦 ) ∩ Fin ) ) |
51 |
23 43 50
|
rspcdva |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) |
52 |
|
sstr2 |
⊢ ( ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑦 ) → ( ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 → ( 𝑓 ‘ 𝑦 ) ⊆ 𝑠 ) ) |
53 |
51 52
|
syl |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → ( ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 → ( 𝑓 ‘ 𝑦 ) ⊆ 𝑠 ) ) |
54 |
53
|
ralimdva |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → ( ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 → ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝑓 ‘ 𝑦 ) ⊆ 𝑠 ) ) |
55 |
54
|
imp |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) → ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝑓 ‘ 𝑦 ) ⊆ 𝑠 ) |
56 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑧 ) ) |
57 |
56
|
sseq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑓 ‘ 𝑦 ) ⊆ 𝑠 ↔ ( 𝑓 ‘ 𝑧 ) ⊆ 𝑠 ) ) |
58 |
57
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝑓 ‘ 𝑦 ) ⊆ 𝑠 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑠 ) |
59 |
55 58
|
sylib |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) → ∀ 𝑧 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑠 ) |
60 |
|
eleq1 |
⊢ ( 𝑡 = 𝑠 → ( 𝑡 ∈ 𝐶 ↔ 𝑠 ∈ 𝐶 ) ) |
61 |
|
pweq |
⊢ ( 𝑡 = 𝑠 → 𝒫 𝑡 = 𝒫 𝑠 ) |
62 |
61
|
ineq1d |
⊢ ( 𝑡 = 𝑠 → ( 𝒫 𝑡 ∩ Fin ) = ( 𝒫 𝑠 ∩ Fin ) ) |
63 |
|
sseq2 |
⊢ ( 𝑡 = 𝑠 → ( ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ↔ ( 𝑓 ‘ 𝑧 ) ⊆ 𝑠 ) ) |
64 |
62 63
|
raleqbidv |
⊢ ( 𝑡 = 𝑠 → ( ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑠 ) ) |
65 |
60 64
|
bibi12d |
⊢ ( 𝑡 = 𝑠 → ( ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ↔ ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑠 ) ) ) |
66 |
37
|
ad2antrr |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) → ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) |
67 |
|
simplr |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) → 𝑠 ∈ 𝒫 𝑋 ) |
68 |
65 66 67
|
rspcdva |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) → ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑠 ) ) |
69 |
59 68
|
mpbird |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) → 𝑠 ∈ 𝐶 ) |
70 |
21 69
|
impbida |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) |
71 |
70
|
ralrimiva |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) → ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) |
72 |
71
|
ex |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) → ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) ) |
73 |
72
|
exlimdv |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) → ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) ) |
74 |
1
|
mrcf |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 : 𝒫 𝑋 ⟶ 𝐶 ) |
75 |
74 39
|
fssd |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) |
76 |
1
|
fvexi |
⊢ 𝐹 ∈ V |
77 |
|
feq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ↔ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) ) |
78 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
79 |
78
|
sseq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ↔ ( 𝐹 ‘ 𝑧 ) ⊆ 𝑡 ) ) |
80 |
79
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝐹 ‘ 𝑧 ) ⊆ 𝑡 ) ) |
81 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑦 ) ) |
82 |
81
|
sseq1d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐹 ‘ 𝑧 ) ⊆ 𝑡 ↔ ( 𝐹 ‘ 𝑦 ) ⊆ 𝑡 ) ) |
83 |
82
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝐹 ‘ 𝑧 ) ⊆ 𝑡 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑡 ) |
84 |
80 83
|
bitrdi |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑡 ) ) |
85 |
84
|
bibi2d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ↔ ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑡 ) ) ) |
86 |
85
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ↔ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑡 ) ) ) |
87 |
|
sseq2 |
⊢ ( 𝑡 = 𝑠 → ( ( 𝐹 ‘ 𝑦 ) ⊆ 𝑡 ↔ ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) |
88 |
62 87
|
raleqbidv |
⊢ ( 𝑡 = 𝑠 → ( ∀ 𝑦 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑡 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) |
89 |
60 88
|
bibi12d |
⊢ ( 𝑡 = 𝑠 → ( ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑡 ) ↔ ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) ) |
90 |
89
|
cbvralvw |
⊢ ( ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑡 ) ↔ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) |
91 |
86 90
|
bitrdi |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ↔ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) ) |
92 |
77 91
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ↔ ( 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) ) ) |
93 |
76 92
|
spcev |
⊢ ( ( 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) → ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) |
94 |
75 93
|
sylan |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) → ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) |
95 |
94
|
ex |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) → ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ) |
96 |
73 95
|
impbid |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) ) |
97 |
12 96
|
syl5bb |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) ) |
98 |
97
|
pm5.32i |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ) ) ↔ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) ) |
99 |
2 98
|
bitri |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) ) |