Step |
Hyp |
Ref |
Expression |
1 |
|
acsdrscl.f |
⊢ 𝐹 = ( mrCls ‘ 𝐶 ) |
2 |
|
isacs3lem |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ∪ 𝑡 ∈ 𝐶 ) ) ) |
3 |
1
|
isacs4lem |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ∪ 𝑡 ∈ 𝐶 ) ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑠 ) = ∪ ( 𝐹 “ 𝑠 ) ) ) ) |
4 |
2 3
|
syl |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑠 ) = ∪ ( 𝐹 “ 𝑠 ) ) ) ) |
5 |
1
|
isacs5lem |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑠 ) = ∪ ( 𝐹 “ 𝑠 ) ) ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑡 ) = ∪ ( 𝐹 “ ( 𝒫 𝑡 ∩ Fin ) ) ) ) |
6 |
1
|
isacs5 |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑡 ) = ∪ ( 𝐹 “ ( 𝒫 𝑡 ∩ Fin ) ) ) ) |
7 |
5 6
|
sylibr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑠 ) = ∪ ( 𝐹 “ 𝑠 ) ) ) → 𝐶 ∈ ( ACS ‘ 𝑋 ) ) |
8 |
4 7
|
impbii |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑠 ) = ∪ ( 𝐹 “ 𝑠 ) ) ) ) |