| Step | Hyp | Ref | Expression | 
						
							| 1 |  | acsdrscl.f | ⊢ 𝐹  =  ( mrCls ‘ 𝐶 ) | 
						
							| 2 |  | isacs3lem | ⊢ ( 𝐶  ∈  ( ACS ‘ 𝑋 )  →  ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ∀ 𝑡  ∈  𝒫  𝐶 ( ( toInc ‘ 𝑡 )  ∈  Dirset  →  ∪  𝑡  ∈  𝐶 ) ) ) | 
						
							| 3 | 1 | isacs4lem | ⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ∀ 𝑡  ∈  𝒫  𝐶 ( ( toInc ‘ 𝑡 )  ∈  Dirset  →  ∪  𝑡  ∈  𝐶 ) )  →  ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ∀ 𝑠  ∈  𝒫  𝒫  𝑋 ( ( toInc ‘ 𝑠 )  ∈  Dirset  →  ( 𝐹 ‘ ∪  𝑠 )  =  ∪  ( 𝐹  “  𝑠 ) ) ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝐶  ∈  ( ACS ‘ 𝑋 )  →  ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ∀ 𝑠  ∈  𝒫  𝒫  𝑋 ( ( toInc ‘ 𝑠 )  ∈  Dirset  →  ( 𝐹 ‘ ∪  𝑠 )  =  ∪  ( 𝐹  “  𝑠 ) ) ) ) | 
						
							| 5 | 1 | isacs5lem | ⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ∀ 𝑠  ∈  𝒫  𝒫  𝑋 ( ( toInc ‘ 𝑠 )  ∈  Dirset  →  ( 𝐹 ‘ ∪  𝑠 )  =  ∪  ( 𝐹  “  𝑠 ) ) )  →  ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ∀ 𝑡  ∈  𝒫  𝑋 ( 𝐹 ‘ 𝑡 )  =  ∪  ( 𝐹  “  ( 𝒫  𝑡  ∩  Fin ) ) ) ) | 
						
							| 6 | 1 | isacs5 | ⊢ ( 𝐶  ∈  ( ACS ‘ 𝑋 )  ↔  ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ∀ 𝑡  ∈  𝒫  𝑋 ( 𝐹 ‘ 𝑡 )  =  ∪  ( 𝐹  “  ( 𝒫  𝑡  ∩  Fin ) ) ) ) | 
						
							| 7 | 5 6 | sylibr | ⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ∀ 𝑠  ∈  𝒫  𝒫  𝑋 ( ( toInc ‘ 𝑠 )  ∈  Dirset  →  ( 𝐹 ‘ ∪  𝑠 )  =  ∪  ( 𝐹  “  𝑠 ) ) )  →  𝐶  ∈  ( ACS ‘ 𝑋 ) ) | 
						
							| 8 | 4 7 | impbii | ⊢ ( 𝐶  ∈  ( ACS ‘ 𝑋 )  ↔  ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ∀ 𝑠  ∈  𝒫  𝒫  𝑋 ( ( toInc ‘ 𝑠 )  ∈  Dirset  →  ( 𝐹 ‘ ∪  𝑠 )  =  ∪  ( 𝐹  “  𝑠 ) ) ) ) |