Step |
Hyp |
Ref |
Expression |
1 |
|
acsdrscl.f |
⊢ 𝐹 = ( mrCls ‘ 𝐶 ) |
2 |
|
isacs3lem |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) ) |
3 |
1
|
isacs4lem |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) ) |
4 |
1
|
isacs5lem |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) ) |
5 |
2 3 4
|
3syl |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) ) |
6 |
|
simpl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
7 |
|
elpwi |
⊢ ( 𝑠 ∈ 𝒫 𝑋 → 𝑠 ⊆ 𝑋 ) |
8 |
1
|
mrcidb2 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ⊆ 𝑋 ) → ( 𝑠 ∈ 𝐶 ↔ ( 𝐹 ‘ 𝑠 ) ⊆ 𝑠 ) ) |
9 |
7 8
|
sylan2 |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → ( 𝑠 ∈ 𝐶 ↔ ( 𝐹 ‘ 𝑠 ) ⊆ 𝑠 ) ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) → ( 𝑠 ∈ 𝐶 ↔ ( 𝐹 ‘ 𝑠 ) ⊆ 𝑠 ) ) |
11 |
|
simpr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) → ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) |
12 |
1
|
mrcf |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 : 𝒫 𝑋 ⟶ 𝐶 ) |
13 |
|
ffun |
⊢ ( 𝐹 : 𝒫 𝑋 ⟶ 𝐶 → Fun 𝐹 ) |
14 |
|
funiunfv |
⊢ ( Fun 𝐹 → ∪ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) |
15 |
12 13 14
|
3syl |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ∪ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) |
16 |
15
|
ad2antrr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) → ∪ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) |
17 |
11 16
|
eqtr4d |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) → ( 𝐹 ‘ 𝑠 ) = ∪ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) ) |
18 |
17
|
sseq1d |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) → ( ( 𝐹 ‘ 𝑠 ) ⊆ 𝑠 ↔ ∪ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) ⊆ 𝑠 ) ) |
19 |
|
iunss |
⊢ ( ∪ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) ⊆ 𝑠 ↔ ∀ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) ⊆ 𝑠 ) |
20 |
18 19
|
bitrdi |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) → ( ( 𝐹 ‘ 𝑠 ) ⊆ 𝑠 ↔ ∀ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) ⊆ 𝑠 ) ) |
21 |
10 20
|
bitrd |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) → ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) ⊆ 𝑠 ) ) |
22 |
21
|
ex |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → ( ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) → ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) ⊆ 𝑠 ) ) ) |
23 |
22
|
ralimdva |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) → ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) ⊆ 𝑠 ) ) ) |
24 |
23
|
imp |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) → ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) ⊆ 𝑠 ) ) |
25 |
1
|
isacs2 |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) ⊆ 𝑠 ) ) ) |
26 |
6 24 25
|
sylanbrc |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) → 𝐶 ∈ ( ACS ‘ 𝑋 ) ) |
27 |
5 26
|
impbii |
⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) ) |