| Step | Hyp | Ref | Expression | 
						
							| 1 |  | acsdrscl.f | ⊢ 𝐹  =  ( mrCls ‘ 𝐶 ) | 
						
							| 2 |  | unifpw | ⊢ ∪  ( 𝒫  𝑠  ∩  Fin )  =  𝑠 | 
						
							| 3 | 2 | fveq2i | ⊢ ( 𝐹 ‘ ∪  ( 𝒫  𝑠  ∩  Fin ) )  =  ( 𝐹 ‘ 𝑠 ) | 
						
							| 4 |  | vex | ⊢ 𝑠  ∈  V | 
						
							| 5 |  | fpwipodrs | ⊢ ( 𝑠  ∈  V  →  ( toInc ‘ ( 𝒫  𝑠  ∩  Fin ) )  ∈  Dirset ) | 
						
							| 6 | 4 5 | mp1i | ⊢ ( ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ∀ 𝑡  ∈  𝒫  𝒫  𝑋 ( ( toInc ‘ 𝑡 )  ∈  Dirset  →  ( 𝐹 ‘ ∪  𝑡 )  =  ∪  ( 𝐹  “  𝑡 ) ) )  ∧  𝑠  ∈  𝒫  𝑋 )  →  ( toInc ‘ ( 𝒫  𝑠  ∩  Fin ) )  ∈  Dirset ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑡  =  ( 𝒫  𝑠  ∩  Fin )  →  ( toInc ‘ 𝑡 )  =  ( toInc ‘ ( 𝒫  𝑠  ∩  Fin ) ) ) | 
						
							| 8 | 7 | eleq1d | ⊢ ( 𝑡  =  ( 𝒫  𝑠  ∩  Fin )  →  ( ( toInc ‘ 𝑡 )  ∈  Dirset  ↔  ( toInc ‘ ( 𝒫  𝑠  ∩  Fin ) )  ∈  Dirset ) ) | 
						
							| 9 |  | unieq | ⊢ ( 𝑡  =  ( 𝒫  𝑠  ∩  Fin )  →  ∪  𝑡  =  ∪  ( 𝒫  𝑠  ∩  Fin ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝑡  =  ( 𝒫  𝑠  ∩  Fin )  →  ( 𝐹 ‘ ∪  𝑡 )  =  ( 𝐹 ‘ ∪  ( 𝒫  𝑠  ∩  Fin ) ) ) | 
						
							| 11 |  | imaeq2 | ⊢ ( 𝑡  =  ( 𝒫  𝑠  ∩  Fin )  →  ( 𝐹  “  𝑡 )  =  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) ) ) | 
						
							| 12 | 11 | unieqd | ⊢ ( 𝑡  =  ( 𝒫  𝑠  ∩  Fin )  →  ∪  ( 𝐹  “  𝑡 )  =  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) ) ) | 
						
							| 13 | 10 12 | eqeq12d | ⊢ ( 𝑡  =  ( 𝒫  𝑠  ∩  Fin )  →  ( ( 𝐹 ‘ ∪  𝑡 )  =  ∪  ( 𝐹  “  𝑡 )  ↔  ( 𝐹 ‘ ∪  ( 𝒫  𝑠  ∩  Fin ) )  =  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) ) ) ) | 
						
							| 14 | 8 13 | imbi12d | ⊢ ( 𝑡  =  ( 𝒫  𝑠  ∩  Fin )  →  ( ( ( toInc ‘ 𝑡 )  ∈  Dirset  →  ( 𝐹 ‘ ∪  𝑡 )  =  ∪  ( 𝐹  “  𝑡 ) )  ↔  ( ( toInc ‘ ( 𝒫  𝑠  ∩  Fin ) )  ∈  Dirset  →  ( 𝐹 ‘ ∪  ( 𝒫  𝑠  ∩  Fin ) )  =  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) ) ) ) ) | 
						
							| 15 |  | simplr | ⊢ ( ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ∀ 𝑡  ∈  𝒫  𝒫  𝑋 ( ( toInc ‘ 𝑡 )  ∈  Dirset  →  ( 𝐹 ‘ ∪  𝑡 )  =  ∪  ( 𝐹  “  𝑡 ) ) )  ∧  𝑠  ∈  𝒫  𝑋 )  →  ∀ 𝑡  ∈  𝒫  𝒫  𝑋 ( ( toInc ‘ 𝑡 )  ∈  Dirset  →  ( 𝐹 ‘ ∪  𝑡 )  =  ∪  ( 𝐹  “  𝑡 ) ) ) | 
						
							| 16 |  | inss1 | ⊢ ( 𝒫  𝑠  ∩  Fin )  ⊆  𝒫  𝑠 | 
						
							| 17 |  | elpwi | ⊢ ( 𝑠  ∈  𝒫  𝑋  →  𝑠  ⊆  𝑋 ) | 
						
							| 18 | 17 | sspwd | ⊢ ( 𝑠  ∈  𝒫  𝑋  →  𝒫  𝑠  ⊆  𝒫  𝑋 ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑠  ∈  𝒫  𝑋 )  →  𝒫  𝑠  ⊆  𝒫  𝑋 ) | 
						
							| 20 | 16 19 | sstrid | ⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑠  ∈  𝒫  𝑋 )  →  ( 𝒫  𝑠  ∩  Fin )  ⊆  𝒫  𝑋 ) | 
						
							| 21 |  | vpwex | ⊢ 𝒫  𝑠  ∈  V | 
						
							| 22 | 21 | inex1 | ⊢ ( 𝒫  𝑠  ∩  Fin )  ∈  V | 
						
							| 23 | 22 | elpw | ⊢ ( ( 𝒫  𝑠  ∩  Fin )  ∈  𝒫  𝒫  𝑋  ↔  ( 𝒫  𝑠  ∩  Fin )  ⊆  𝒫  𝑋 ) | 
						
							| 24 | 20 23 | sylibr | ⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑠  ∈  𝒫  𝑋 )  →  ( 𝒫  𝑠  ∩  Fin )  ∈  𝒫  𝒫  𝑋 ) | 
						
							| 25 | 24 | adantlr | ⊢ ( ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ∀ 𝑡  ∈  𝒫  𝒫  𝑋 ( ( toInc ‘ 𝑡 )  ∈  Dirset  →  ( 𝐹 ‘ ∪  𝑡 )  =  ∪  ( 𝐹  “  𝑡 ) ) )  ∧  𝑠  ∈  𝒫  𝑋 )  →  ( 𝒫  𝑠  ∩  Fin )  ∈  𝒫  𝒫  𝑋 ) | 
						
							| 26 | 14 15 25 | rspcdva | ⊢ ( ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ∀ 𝑡  ∈  𝒫  𝒫  𝑋 ( ( toInc ‘ 𝑡 )  ∈  Dirset  →  ( 𝐹 ‘ ∪  𝑡 )  =  ∪  ( 𝐹  “  𝑡 ) ) )  ∧  𝑠  ∈  𝒫  𝑋 )  →  ( ( toInc ‘ ( 𝒫  𝑠  ∩  Fin ) )  ∈  Dirset  →  ( 𝐹 ‘ ∪  ( 𝒫  𝑠  ∩  Fin ) )  =  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) ) ) ) | 
						
							| 27 | 6 26 | mpd | ⊢ ( ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ∀ 𝑡  ∈  𝒫  𝒫  𝑋 ( ( toInc ‘ 𝑡 )  ∈  Dirset  →  ( 𝐹 ‘ ∪  𝑡 )  =  ∪  ( 𝐹  “  𝑡 ) ) )  ∧  𝑠  ∈  𝒫  𝑋 )  →  ( 𝐹 ‘ ∪  ( 𝒫  𝑠  ∩  Fin ) )  =  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) ) ) | 
						
							| 28 | 3 27 | eqtr3id | ⊢ ( ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ∀ 𝑡  ∈  𝒫  𝒫  𝑋 ( ( toInc ‘ 𝑡 )  ∈  Dirset  →  ( 𝐹 ‘ ∪  𝑡 )  =  ∪  ( 𝐹  “  𝑡 ) ) )  ∧  𝑠  ∈  𝒫  𝑋 )  →  ( 𝐹 ‘ 𝑠 )  =  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) ) ) | 
						
							| 29 | 28 | ralrimiva | ⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ∀ 𝑡  ∈  𝒫  𝒫  𝑋 ( ( toInc ‘ 𝑡 )  ∈  Dirset  →  ( 𝐹 ‘ ∪  𝑡 )  =  ∪  ( 𝐹  “  𝑡 ) ) )  →  ∀ 𝑠  ∈  𝒫  𝑋 ( 𝐹 ‘ 𝑠 )  =  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) ) ) | 
						
							| 30 | 29 | ex | ⊢ ( 𝐶  ∈  ( Moore ‘ 𝑋 )  →  ( ∀ 𝑡  ∈  𝒫  𝒫  𝑋 ( ( toInc ‘ 𝑡 )  ∈  Dirset  →  ( 𝐹 ‘ ∪  𝑡 )  =  ∪  ( 𝐹  “  𝑡 ) )  →  ∀ 𝑠  ∈  𝒫  𝑋 ( 𝐹 ‘ 𝑠 )  =  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) ) ) ) | 
						
							| 31 | 30 | imdistani | ⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ∀ 𝑡  ∈  𝒫  𝒫  𝑋 ( ( toInc ‘ 𝑡 )  ∈  Dirset  →  ( 𝐹 ‘ ∪  𝑡 )  =  ∪  ( 𝐹  “  𝑡 ) ) )  →  ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  ∀ 𝑠  ∈  𝒫  𝑋 ( 𝐹 ‘ 𝑠 )  =  ∪  ( 𝐹  “  ( 𝒫  𝑠  ∩  Fin ) ) ) ) |