Step |
Hyp |
Ref |
Expression |
1 |
|
acsdrscl.f |
⊢ 𝐹 = ( mrCls ‘ 𝐶 ) |
2 |
|
unifpw |
⊢ ∪ ( 𝒫 𝑠 ∩ Fin ) = 𝑠 |
3 |
2
|
fveq2i |
⊢ ( 𝐹 ‘ ∪ ( 𝒫 𝑠 ∩ Fin ) ) = ( 𝐹 ‘ 𝑠 ) |
4 |
|
vex |
⊢ 𝑠 ∈ V |
5 |
|
fpwipodrs |
⊢ ( 𝑠 ∈ V → ( toInc ‘ ( 𝒫 𝑠 ∩ Fin ) ) ∈ Dirset ) |
6 |
4 5
|
mp1i |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → ( toInc ‘ ( 𝒫 𝑠 ∩ Fin ) ) ∈ Dirset ) |
7 |
|
fveq2 |
⊢ ( 𝑡 = ( 𝒫 𝑠 ∩ Fin ) → ( toInc ‘ 𝑡 ) = ( toInc ‘ ( 𝒫 𝑠 ∩ Fin ) ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑡 = ( 𝒫 𝑠 ∩ Fin ) → ( ( toInc ‘ 𝑡 ) ∈ Dirset ↔ ( toInc ‘ ( 𝒫 𝑠 ∩ Fin ) ) ∈ Dirset ) ) |
9 |
|
unieq |
⊢ ( 𝑡 = ( 𝒫 𝑠 ∩ Fin ) → ∪ 𝑡 = ∪ ( 𝒫 𝑠 ∩ Fin ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝑡 = ( 𝒫 𝑠 ∩ Fin ) → ( 𝐹 ‘ ∪ 𝑡 ) = ( 𝐹 ‘ ∪ ( 𝒫 𝑠 ∩ Fin ) ) ) |
11 |
|
imaeq2 |
⊢ ( 𝑡 = ( 𝒫 𝑠 ∩ Fin ) → ( 𝐹 “ 𝑡 ) = ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) |
12 |
11
|
unieqd |
⊢ ( 𝑡 = ( 𝒫 𝑠 ∩ Fin ) → ∪ ( 𝐹 “ 𝑡 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) |
13 |
10 12
|
eqeq12d |
⊢ ( 𝑡 = ( 𝒫 𝑠 ∩ Fin ) → ( ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ↔ ( 𝐹 ‘ ∪ ( 𝒫 𝑠 ∩ Fin ) ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) ) |
14 |
8 13
|
imbi12d |
⊢ ( 𝑡 = ( 𝒫 𝑠 ∩ Fin ) → ( ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ↔ ( ( toInc ‘ ( 𝒫 𝑠 ∩ Fin ) ) ∈ Dirset → ( 𝐹 ‘ ∪ ( 𝒫 𝑠 ∩ Fin ) ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) ) ) |
15 |
|
simplr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) |
16 |
|
inss1 |
⊢ ( 𝒫 𝑠 ∩ Fin ) ⊆ 𝒫 𝑠 |
17 |
|
elpwi |
⊢ ( 𝑠 ∈ 𝒫 𝑋 → 𝑠 ⊆ 𝑋 ) |
18 |
17
|
sspwd |
⊢ ( 𝑠 ∈ 𝒫 𝑋 → 𝒫 𝑠 ⊆ 𝒫 𝑋 ) |
19 |
18
|
adantl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → 𝒫 𝑠 ⊆ 𝒫 𝑋 ) |
20 |
16 19
|
sstrid |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → ( 𝒫 𝑠 ∩ Fin ) ⊆ 𝒫 𝑋 ) |
21 |
|
vpwex |
⊢ 𝒫 𝑠 ∈ V |
22 |
21
|
inex1 |
⊢ ( 𝒫 𝑠 ∩ Fin ) ∈ V |
23 |
22
|
elpw |
⊢ ( ( 𝒫 𝑠 ∩ Fin ) ∈ 𝒫 𝒫 𝑋 ↔ ( 𝒫 𝑠 ∩ Fin ) ⊆ 𝒫 𝑋 ) |
24 |
20 23
|
sylibr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → ( 𝒫 𝑠 ∩ Fin ) ∈ 𝒫 𝒫 𝑋 ) |
25 |
24
|
adantlr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → ( 𝒫 𝑠 ∩ Fin ) ∈ 𝒫 𝒫 𝑋 ) |
26 |
14 15 25
|
rspcdva |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → ( ( toInc ‘ ( 𝒫 𝑠 ∩ Fin ) ) ∈ Dirset → ( 𝐹 ‘ ∪ ( 𝒫 𝑠 ∩ Fin ) ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) ) |
27 |
6 26
|
mpd |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → ( 𝐹 ‘ ∪ ( 𝒫 𝑠 ∩ Fin ) ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) |
28 |
3 27
|
eqtr3id |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) |
29 |
28
|
ralrimiva |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) → ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) |
30 |
29
|
ex |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) → ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) ) |
31 |
30
|
imdistani |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) ) |