Metamath Proof Explorer


Theorem isarep1

Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. The object PrimReplace is apparently the image of the function encoded by ph ( x , y ) i.e. the class ( { <. x , y >. | ph } " A ) . If so, we can prove Isabelle's "Axiom of Replacement" conclusion without using the Axiom of Replacement, for which I (N. Megill) currently have no explanation. (Contributed by NM, 26-Oct-2006) (Proof shortened by Mario Carneiro, 4-Dec-2016)

Ref Expression
Assertion isarep1 ( 𝑏 ∈ ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } “ 𝐴 ) ↔ ∃ 𝑥𝐴 [ 𝑏 / 𝑦 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 vex 𝑏 ∈ V
2 1 elima ( 𝑏 ∈ ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } “ 𝐴 ) ↔ ∃ 𝑧𝐴 𝑧 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } 𝑏 )
3 df-br ( 𝑧 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } 𝑏 ↔ ⟨ 𝑧 , 𝑏 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } )
4 opelopabsb ( ⟨ 𝑧 , 𝑏 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ [ 𝑧 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 )
5 sbsbc ( [ 𝑏 / 𝑦 ] 𝜑[ 𝑏 / 𝑦 ] 𝜑 )
6 5 sbbii ( [ 𝑧 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 )
7 sbsbc ( [ 𝑧 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑[ 𝑧 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 )
8 6 7 bitr2i ( [ 𝑧 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 )
9 3 4 8 3bitri ( 𝑧 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } 𝑏 ↔ [ 𝑧 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 )
10 9 rexbii ( ∃ 𝑧𝐴 𝑧 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } 𝑏 ↔ ∃ 𝑧𝐴 [ 𝑧 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 )
11 nfs1v 𝑥 [ 𝑧 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑
12 nfv 𝑧 [ 𝑏 / 𝑦 ] 𝜑
13 sbequ12r ( 𝑧 = 𝑥 → ( [ 𝑧 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ [ 𝑏 / 𝑦 ] 𝜑 ) )
14 11 12 13 cbvrexw ( ∃ 𝑧𝐴 [ 𝑧 / 𝑥 ] [ 𝑏 / 𝑦 ] 𝜑 ↔ ∃ 𝑥𝐴 [ 𝑏 / 𝑦 ] 𝜑 )
15 2 10 14 3bitri ( 𝑏 ∈ ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } “ 𝐴 ) ↔ ∃ 𝑥𝐴 [ 𝑏 / 𝑦 ] 𝜑 )