| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isass.1 | ⊢ 𝑋  =  dom  dom  𝐺 | 
						
							| 2 |  | dmeq | ⊢ ( 𝑔  =  𝐺  →  dom  𝑔  =  dom  𝐺 ) | 
						
							| 3 | 2 | dmeqd | ⊢ ( 𝑔  =  𝐺  →  dom  dom  𝑔  =  dom  dom  𝐺 ) | 
						
							| 4 | 3 | eleq2d | ⊢ ( 𝑔  =  𝐺  →  ( 𝑥  ∈  dom  dom  𝑔  ↔  𝑥  ∈  dom  dom  𝐺 ) ) | 
						
							| 5 | 3 | eleq2d | ⊢ ( 𝑔  =  𝐺  →  ( 𝑦  ∈  dom  dom  𝑔  ↔  𝑦  ∈  dom  dom  𝐺 ) ) | 
						
							| 6 | 3 | eleq2d | ⊢ ( 𝑔  =  𝐺  →  ( 𝑧  ∈  dom  dom  𝑔  ↔  𝑧  ∈  dom  dom  𝐺 ) ) | 
						
							| 7 | 4 5 6 | 3anbi123d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑥  ∈  dom  dom  𝑔  ∧  𝑦  ∈  dom  dom  𝑔  ∧  𝑧  ∈  dom  dom  𝑔 )  ↔  ( 𝑥  ∈  dom  dom  𝐺  ∧  𝑦  ∈  dom  dom  𝐺  ∧  𝑧  ∈  dom  dom  𝐺 ) ) ) | 
						
							| 8 |  | oveq | ⊢ ( 𝑔  =  𝐺  →  ( 𝑥 𝑔 𝑦 )  =  ( 𝑥 𝐺 𝑦 ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( ( 𝑥 𝐺 𝑦 ) 𝑔 𝑧 ) ) | 
						
							| 10 |  | oveq | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑥 𝐺 𝑦 ) 𝑔 𝑧 )  =  ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) ) | 
						
							| 11 | 9 10 | eqtrd | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) ) | 
						
							| 12 |  | oveq | ⊢ ( 𝑔  =  𝐺  →  ( 𝑦 𝑔 𝑧 )  =  ( 𝑦 𝐺 𝑧 ) ) | 
						
							| 13 | 12 | oveq2d | ⊢ ( 𝑔  =  𝐺  →  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )  =  ( 𝑥 𝑔 ( 𝑦 𝐺 𝑧 ) ) ) | 
						
							| 14 |  | oveq | ⊢ ( 𝑔  =  𝐺  →  ( 𝑥 𝑔 ( 𝑦 𝐺 𝑧 ) )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) | 
						
							| 15 | 13 14 | eqtrd | ⊢ ( 𝑔  =  𝐺  →  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) | 
						
							| 16 | 11 15 | eqeq12d | ⊢ ( 𝑔  =  𝐺  →  ( ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )  ↔  ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) | 
						
							| 17 | 7 16 | imbi12d | ⊢ ( 𝑔  =  𝐺  →  ( ( ( 𝑥  ∈  dom  dom  𝑔  ∧  𝑦  ∈  dom  dom  𝑔  ∧  𝑧  ∈  dom  dom  𝑔 )  →  ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) )  ↔  ( ( 𝑥  ∈  dom  dom  𝐺  ∧  𝑦  ∈  dom  dom  𝐺  ∧  𝑧  ∈  dom  dom  𝐺 )  →  ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) ) | 
						
							| 18 | 17 | albidv | ⊢ ( 𝑔  =  𝐺  →  ( ∀ 𝑧 ( ( 𝑥  ∈  dom  dom  𝑔  ∧  𝑦  ∈  dom  dom  𝑔  ∧  𝑧  ∈  dom  dom  𝑔 )  →  ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) )  ↔  ∀ 𝑧 ( ( 𝑥  ∈  dom  dom  𝐺  ∧  𝑦  ∈  dom  dom  𝐺  ∧  𝑧  ∈  dom  dom  𝐺 )  →  ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) ) | 
						
							| 19 | 18 | 2albidv | ⊢ ( 𝑔  =  𝐺  →  ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥  ∈  dom  dom  𝑔  ∧  𝑦  ∈  dom  dom  𝑔  ∧  𝑧  ∈  dom  dom  𝑔 )  →  ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) )  ↔  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥  ∈  dom  dom  𝐺  ∧  𝑦  ∈  dom  dom  𝐺  ∧  𝑧  ∈  dom  dom  𝐺 )  →  ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) ) | 
						
							| 20 |  | r3al | ⊢ ( ∀ 𝑥  ∈  dom  dom  𝑔 ∀ 𝑦  ∈  dom  dom  𝑔 ∀ 𝑧  ∈  dom  dom  𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )  ↔  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥  ∈  dom  dom  𝑔  ∧  𝑦  ∈  dom  dom  𝑔  ∧  𝑧  ∈  dom  dom  𝑔 )  →  ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ) ) | 
						
							| 21 |  | r3al | ⊢ ( ∀ 𝑥  ∈  dom  dom  𝐺 ∀ 𝑦  ∈  dom  dom  𝐺 ∀ 𝑧  ∈  dom  dom  𝐺 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) )  ↔  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥  ∈  dom  dom  𝐺  ∧  𝑦  ∈  dom  dom  𝐺  ∧  𝑧  ∈  dom  dom  𝐺 )  →  ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) | 
						
							| 22 | 19 20 21 | 3bitr4g | ⊢ ( 𝑔  =  𝐺  →  ( ∀ 𝑥  ∈  dom  dom  𝑔 ∀ 𝑦  ∈  dom  dom  𝑔 ∀ 𝑧  ∈  dom  dom  𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )  ↔  ∀ 𝑥  ∈  dom  dom  𝐺 ∀ 𝑦  ∈  dom  dom  𝐺 ∀ 𝑧  ∈  dom  dom  𝐺 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) | 
						
							| 23 | 1 | eqcomi | ⊢ dom  dom  𝐺  =  𝑋 | 
						
							| 24 | 23 | a1i | ⊢ ( 𝑔  =  𝐺  →  dom  dom  𝐺  =  𝑋 ) | 
						
							| 25 | 24 | raleqdv | ⊢ ( 𝑔  =  𝐺  →  ( ∀ 𝑦  ∈  dom  dom  𝐺 ∀ 𝑧  ∈  dom  dom  𝐺 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) )  ↔  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  dom  dom  𝐺 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) | 
						
							| 26 | 24 25 | raleqbidv | ⊢ ( 𝑔  =  𝐺  →  ( ∀ 𝑥  ∈  dom  dom  𝐺 ∀ 𝑦  ∈  dom  dom  𝐺 ∀ 𝑧  ∈  dom  dom  𝐺 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) )  ↔  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  dom  dom  𝐺 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) | 
						
							| 27 | 24 | raleqdv | ⊢ ( 𝑔  =  𝐺  →  ( ∀ 𝑧  ∈  dom  dom  𝐺 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) )  ↔  ∀ 𝑧  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) | 
						
							| 28 | 27 | 2ralbidv | ⊢ ( 𝑔  =  𝐺  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  dom  dom  𝐺 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) )  ↔  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) | 
						
							| 29 | 22 26 28 | 3bitrd | ⊢ ( 𝑔  =  𝐺  →  ( ∀ 𝑥  ∈  dom  dom  𝑔 ∀ 𝑦  ∈  dom  dom  𝑔 ∀ 𝑧  ∈  dom  dom  𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) )  ↔  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) | 
						
							| 30 |  | df-ass | ⊢ Ass  =  { 𝑔  ∣  ∀ 𝑥  ∈  dom  dom  𝑔 ∀ 𝑦  ∈  dom  dom  𝑔 ∀ 𝑧  ∈  dom  dom  𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 )  =  ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) } | 
						
							| 31 | 29 30 | elab2g | ⊢ ( 𝐺  ∈  𝐴  →  ( 𝐺  ∈  Ass  ↔  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |