Step |
Hyp |
Ref |
Expression |
1 |
|
isass.1 |
⊢ 𝑋 = dom dom 𝐺 |
2 |
|
dmeq |
⊢ ( 𝑔 = 𝐺 → dom 𝑔 = dom 𝐺 ) |
3 |
2
|
dmeqd |
⊢ ( 𝑔 = 𝐺 → dom dom 𝑔 = dom dom 𝐺 ) |
4 |
3
|
eleq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 ∈ dom dom 𝑔 ↔ 𝑥 ∈ dom dom 𝐺 ) ) |
5 |
3
|
eleq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑦 ∈ dom dom 𝑔 ↔ 𝑦 ∈ dom dom 𝐺 ) ) |
6 |
3
|
eleq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑧 ∈ dom dom 𝑔 ↔ 𝑧 ∈ dom dom 𝐺 ) ) |
7 |
4 5 6
|
3anbi123d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑥 ∈ dom dom 𝑔 ∧ 𝑦 ∈ dom dom 𝑔 ∧ 𝑧 ∈ dom dom 𝑔 ) ↔ ( 𝑥 ∈ dom dom 𝐺 ∧ 𝑦 ∈ dom dom 𝐺 ∧ 𝑧 ∈ dom dom 𝐺 ) ) ) |
8 |
|
oveq |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 𝑔 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) |
9 |
8
|
oveq1d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( ( 𝑥 𝐺 𝑦 ) 𝑔 𝑧 ) ) |
10 |
|
oveq |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑥 𝐺 𝑦 ) 𝑔 𝑧 ) = ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) ) |
11 |
9 10
|
eqtrd |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) ) |
12 |
|
oveq |
⊢ ( 𝑔 = 𝐺 → ( 𝑦 𝑔 𝑧 ) = ( 𝑦 𝐺 𝑧 ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) = ( 𝑥 𝑔 ( 𝑦 𝐺 𝑧 ) ) ) |
14 |
|
oveq |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 𝑔 ( 𝑦 𝐺 𝑧 ) ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) |
15 |
13 14
|
eqtrd |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) |
16 |
11 15
|
eqeq12d |
⊢ ( 𝑔 = 𝐺 → ( ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ↔ ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |
17 |
7 16
|
imbi12d |
⊢ ( 𝑔 = 𝐺 → ( ( ( 𝑥 ∈ dom dom 𝑔 ∧ 𝑦 ∈ dom dom 𝑔 ∧ 𝑧 ∈ dom dom 𝑔 ) → ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ) ↔ ( ( 𝑥 ∈ dom dom 𝐺 ∧ 𝑦 ∈ dom dom 𝐺 ∧ 𝑧 ∈ dom dom 𝐺 ) → ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) ) |
18 |
17
|
albidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑧 ( ( 𝑥 ∈ dom dom 𝑔 ∧ 𝑦 ∈ dom dom 𝑔 ∧ 𝑧 ∈ dom dom 𝑔 ) → ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ) ↔ ∀ 𝑧 ( ( 𝑥 ∈ dom dom 𝐺 ∧ 𝑦 ∈ dom dom 𝐺 ∧ 𝑧 ∈ dom dom 𝐺 ) → ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) ) |
19 |
18
|
2albidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ∈ dom dom 𝑔 ∧ 𝑦 ∈ dom dom 𝑔 ∧ 𝑧 ∈ dom dom 𝑔 ) → ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ∈ dom dom 𝐺 ∧ 𝑦 ∈ dom dom 𝐺 ∧ 𝑧 ∈ dom dom 𝐺 ) → ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) ) |
20 |
|
r3al |
⊢ ( ∀ 𝑥 ∈ dom dom 𝑔 ∀ 𝑦 ∈ dom dom 𝑔 ∀ 𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ∈ dom dom 𝑔 ∧ 𝑦 ∈ dom dom 𝑔 ∧ 𝑧 ∈ dom dom 𝑔 ) → ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ) ) |
21 |
|
r3al |
⊢ ( ∀ 𝑥 ∈ dom dom 𝐺 ∀ 𝑦 ∈ dom dom 𝐺 ∀ 𝑧 ∈ dom dom 𝐺 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ∈ dom dom 𝐺 ∧ 𝑦 ∈ dom dom 𝐺 ∧ 𝑧 ∈ dom dom 𝐺 ) → ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |
22 |
19 20 21
|
3bitr4g |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑥 ∈ dom dom 𝑔 ∀ 𝑦 ∈ dom dom 𝑔 ∀ 𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ↔ ∀ 𝑥 ∈ dom dom 𝐺 ∀ 𝑦 ∈ dom dom 𝐺 ∀ 𝑧 ∈ dom dom 𝐺 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |
23 |
1
|
eqcomi |
⊢ dom dom 𝐺 = 𝑋 |
24 |
23
|
a1i |
⊢ ( 𝑔 = 𝐺 → dom dom 𝐺 = 𝑋 ) |
25 |
24
|
raleqdv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑦 ∈ dom dom 𝐺 ∀ 𝑧 ∈ dom dom 𝐺 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ dom dom 𝐺 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |
26 |
24 25
|
raleqbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑥 ∈ dom dom 𝐺 ∀ 𝑦 ∈ dom dom 𝐺 ∀ 𝑧 ∈ dom dom 𝐺 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ dom dom 𝐺 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |
27 |
24
|
raleqdv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑧 ∈ dom dom 𝐺 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |
28 |
27
|
2ralbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ dom dom 𝐺 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |
29 |
22 26 28
|
3bitrd |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑥 ∈ dom dom 𝑔 ∀ 𝑦 ∈ dom dom 𝑔 ∀ 𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |
30 |
|
df-ass |
⊢ Ass = { 𝑔 ∣ ∀ 𝑥 ∈ dom dom 𝑔 ∀ 𝑦 ∈ dom dom 𝑔 ∀ 𝑧 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) 𝑔 𝑧 ) = ( 𝑥 𝑔 ( 𝑦 𝑔 𝑧 ) ) } |
31 |
29 30
|
elab2g |
⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ Ass ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |