Step |
Hyp |
Ref |
Expression |
1 |
|
isassa.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
isassa.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
3 |
|
isassa.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
4 |
|
isassa.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
5 |
|
isassa.t |
⊢ × = ( .r ‘ 𝑊 ) |
6 |
|
fvexd |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) ∈ V ) |
7 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) |
8 |
7 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = 𝐹 ) |
9 |
|
simpr |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = 𝐹 ) → 𝑓 = 𝐹 ) |
10 |
9
|
eleq1d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = 𝐹 ) → ( 𝑓 ∈ CRing ↔ 𝐹 ∈ CRing ) ) |
11 |
9
|
fveq2d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = 𝐹 ) → ( Base ‘ 𝑓 ) = ( Base ‘ 𝐹 ) ) |
12 |
11 3
|
eqtr4di |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = 𝐹 ) → ( Base ‘ 𝑓 ) = 𝐵 ) |
13 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
14 |
13 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝑉 ) |
15 |
|
fvexd |
⊢ ( 𝑤 = 𝑊 → ( ·𝑠 ‘ 𝑤 ) ∈ V ) |
16 |
|
fvexd |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠 ‘ 𝑤 ) ) → ( .r ‘ 𝑤 ) ∈ V ) |
17 |
|
simpr |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠 ‘ 𝑤 ) ) ∧ 𝑡 = ( .r ‘ 𝑤 ) ) → 𝑡 = ( .r ‘ 𝑤 ) ) |
18 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( .r ‘ 𝑤 ) = ( .r ‘ 𝑊 ) ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠 ‘ 𝑤 ) ) ∧ 𝑡 = ( .r ‘ 𝑤 ) ) → ( .r ‘ 𝑤 ) = ( .r ‘ 𝑊 ) ) |
20 |
19 5
|
eqtr4di |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠 ‘ 𝑤 ) ) ∧ 𝑡 = ( .r ‘ 𝑤 ) ) → ( .r ‘ 𝑤 ) = × ) |
21 |
17 20
|
eqtrd |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠 ‘ 𝑤 ) ) ∧ 𝑡 = ( .r ‘ 𝑤 ) ) → 𝑡 = × ) |
22 |
|
simplr |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠 ‘ 𝑤 ) ) ∧ 𝑡 = ( .r ‘ 𝑤 ) ) → 𝑠 = ( ·𝑠 ‘ 𝑤 ) ) |
23 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ·𝑠 ‘ 𝑤 ) = ( ·𝑠 ‘ 𝑊 ) ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠 ‘ 𝑤 ) ) ∧ 𝑡 = ( .r ‘ 𝑤 ) ) → ( ·𝑠 ‘ 𝑤 ) = ( ·𝑠 ‘ 𝑊 ) ) |
25 |
24 4
|
eqtr4di |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠 ‘ 𝑤 ) ) ∧ 𝑡 = ( .r ‘ 𝑤 ) ) → ( ·𝑠 ‘ 𝑤 ) = · ) |
26 |
22 25
|
eqtrd |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠 ‘ 𝑤 ) ) ∧ 𝑡 = ( .r ‘ 𝑤 ) ) → 𝑠 = · ) |
27 |
26
|
oveqd |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠 ‘ 𝑤 ) ) ∧ 𝑡 = ( .r ‘ 𝑤 ) ) → ( 𝑟 𝑠 𝑥 ) = ( 𝑟 · 𝑥 ) ) |
28 |
|
eqidd |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠 ‘ 𝑤 ) ) ∧ 𝑡 = ( .r ‘ 𝑤 ) ) → 𝑦 = 𝑦 ) |
29 |
21 27 28
|
oveq123d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠 ‘ 𝑤 ) ) ∧ 𝑡 = ( .r ‘ 𝑤 ) ) → ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( ( 𝑟 · 𝑥 ) × 𝑦 ) ) |
30 |
|
eqidd |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠 ‘ 𝑤 ) ) ∧ 𝑡 = ( .r ‘ 𝑤 ) ) → 𝑟 = 𝑟 ) |
31 |
21
|
oveqd |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠 ‘ 𝑤 ) ) ∧ 𝑡 = ( .r ‘ 𝑤 ) ) → ( 𝑥 𝑡 𝑦 ) = ( 𝑥 × 𝑦 ) ) |
32 |
26 30 31
|
oveq123d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠 ‘ 𝑤 ) ) ∧ 𝑡 = ( .r ‘ 𝑤 ) ) → ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) |
33 |
29 32
|
eqeq12d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠 ‘ 𝑤 ) ) ∧ 𝑡 = ( .r ‘ 𝑤 ) ) → ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ↔ ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) |
34 |
|
eqidd |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠 ‘ 𝑤 ) ) ∧ 𝑡 = ( .r ‘ 𝑤 ) ) → 𝑥 = 𝑥 ) |
35 |
26
|
oveqd |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠 ‘ 𝑤 ) ) ∧ 𝑡 = ( .r ‘ 𝑤 ) ) → ( 𝑟 𝑠 𝑦 ) = ( 𝑟 · 𝑦 ) ) |
36 |
21 34 35
|
oveq123d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠 ‘ 𝑤 ) ) ∧ 𝑡 = ( .r ‘ 𝑤 ) ) → ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑥 × ( 𝑟 · 𝑦 ) ) ) |
37 |
36 32
|
eqeq12d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠 ‘ 𝑤 ) ) ∧ 𝑡 = ( .r ‘ 𝑤 ) ) → ( ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ↔ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) |
38 |
33 37
|
anbi12d |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠 ‘ 𝑤 ) ) ∧ 𝑡 = ( .r ‘ 𝑤 ) ) → ( ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) ↔ ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ) |
39 |
16 38
|
sbcied |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠 ‘ 𝑤 ) ) → ( [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) ↔ ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ) |
40 |
15 39
|
sbcied |
⊢ ( 𝑤 = 𝑊 → ( [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) ↔ ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ) |
41 |
14 40
|
raleqbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ) |
42 |
14 41
|
raleqbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ) |
43 |
42
|
adantr |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = 𝐹 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ) |
44 |
12 43
|
raleqbidv |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = 𝐹 ) → ( ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) ↔ ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ) |
45 |
10 44
|
anbi12d |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = 𝐹 ) → ( ( 𝑓 ∈ CRing ∧ ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) ) ↔ ( 𝐹 ∈ CRing ∧ ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ) ) |
46 |
6 8 45
|
sbcied2 |
⊢ ( 𝑤 = 𝑊 → ( [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( 𝑓 ∈ CRing ∧ ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) ) ↔ ( 𝐹 ∈ CRing ∧ ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ) ) |
47 |
|
df-assa |
⊢ AssAlg = { 𝑤 ∈ ( LMod ∩ Ring ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( 𝑓 ∈ CRing ∧ ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) ) } |
48 |
46 47
|
elrab2 |
⊢ ( 𝑊 ∈ AssAlg ↔ ( 𝑊 ∈ ( LMod ∩ Ring ) ∧ ( 𝐹 ∈ CRing ∧ ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ) ) |
49 |
|
anass |
⊢ ( ( ( 𝑊 ∈ ( LMod ∩ Ring ) ∧ 𝐹 ∈ CRing ) ∧ ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ↔ ( 𝑊 ∈ ( LMod ∩ Ring ) ∧ ( 𝐹 ∈ CRing ∧ ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ) ) |
50 |
|
elin |
⊢ ( 𝑊 ∈ ( LMod ∩ Ring ) ↔ ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ) ) |
51 |
50
|
anbi1i |
⊢ ( ( 𝑊 ∈ ( LMod ∩ Ring ) ∧ 𝐹 ∈ CRing ) ↔ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ) ∧ 𝐹 ∈ CRing ) ) |
52 |
|
df-3an |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing ) ↔ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ) ∧ 𝐹 ∈ CRing ) ) |
53 |
51 52
|
bitr4i |
⊢ ( ( 𝑊 ∈ ( LMod ∩ Ring ) ∧ 𝐹 ∈ CRing ) ↔ ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing ) ) |
54 |
53
|
anbi1i |
⊢ ( ( ( 𝑊 ∈ ( LMod ∩ Ring ) ∧ 𝐹 ∈ CRing ) ∧ ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ↔ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing ) ∧ ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ) |
55 |
48 49 54
|
3bitr2i |
⊢ ( 𝑊 ∈ AssAlg ↔ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing ) ∧ ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ) |