| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isassa.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
isassa.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
isassa.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
| 4 |
|
isassa.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 5 |
|
isassa.t |
⊢ × = ( .r ‘ 𝑊 ) |
| 6 |
|
fvexd |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) ∈ V ) |
| 7 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) |
| 8 |
7 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = 𝐹 ) |
| 9 |
|
fveq2 |
⊢ ( 𝑓 = 𝐹 → ( Base ‘ 𝑓 ) = ( Base ‘ 𝐹 ) ) |
| 10 |
9 3
|
eqtr4di |
⊢ ( 𝑓 = 𝐹 → ( Base ‘ 𝑓 ) = 𝐵 ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = 𝐹 ) → ( Base ‘ 𝑓 ) = 𝐵 ) |
| 12 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
| 13 |
12 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝑉 ) |
| 14 |
|
simpr |
⊢ ( ( 𝑠 = · ∧ 𝑡 = × ) → 𝑡 = × ) |
| 15 |
|
simpl |
⊢ ( ( 𝑠 = · ∧ 𝑡 = × ) → 𝑠 = · ) |
| 16 |
15
|
oveqd |
⊢ ( ( 𝑠 = · ∧ 𝑡 = × ) → ( 𝑟 𝑠 𝑥 ) = ( 𝑟 · 𝑥 ) ) |
| 17 |
|
eqidd |
⊢ ( ( 𝑠 = · ∧ 𝑡 = × ) → 𝑦 = 𝑦 ) |
| 18 |
14 16 17
|
oveq123d |
⊢ ( ( 𝑠 = · ∧ 𝑡 = × ) → ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( ( 𝑟 · 𝑥 ) × 𝑦 ) ) |
| 19 |
|
eqidd |
⊢ ( ( 𝑠 = · ∧ 𝑡 = × ) → 𝑟 = 𝑟 ) |
| 20 |
14
|
oveqd |
⊢ ( ( 𝑠 = · ∧ 𝑡 = × ) → ( 𝑥 𝑡 𝑦 ) = ( 𝑥 × 𝑦 ) ) |
| 21 |
15 19 20
|
oveq123d |
⊢ ( ( 𝑠 = · ∧ 𝑡 = × ) → ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) |
| 22 |
18 21
|
eqeq12d |
⊢ ( ( 𝑠 = · ∧ 𝑡 = × ) → ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ↔ ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) |
| 23 |
|
eqidd |
⊢ ( ( 𝑠 = · ∧ 𝑡 = × ) → 𝑥 = 𝑥 ) |
| 24 |
15
|
oveqd |
⊢ ( ( 𝑠 = · ∧ 𝑡 = × ) → ( 𝑟 𝑠 𝑦 ) = ( 𝑟 · 𝑦 ) ) |
| 25 |
14 23 24
|
oveq123d |
⊢ ( ( 𝑠 = · ∧ 𝑡 = × ) → ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑥 × ( 𝑟 · 𝑦 ) ) ) |
| 26 |
25 21
|
eqeq12d |
⊢ ( ( 𝑠 = · ∧ 𝑡 = × ) → ( ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ↔ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) |
| 27 |
22 26
|
anbi12d |
⊢ ( ( 𝑠 = · ∧ 𝑡 = × ) → ( ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) ↔ ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ) |
| 28 |
4 5 27
|
sbcie2s |
⊢ ( 𝑤 = 𝑊 → ( [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) ↔ ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ) |
| 29 |
13 28
|
raleqbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ) |
| 30 |
13 29
|
raleqbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = 𝐹 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ) |
| 32 |
11 31
|
raleqbidv |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = 𝐹 ) → ( ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) ↔ ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ) |
| 33 |
6 8 32
|
sbcied2 |
⊢ ( 𝑤 = 𝑊 → ( [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) ↔ ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ) |
| 34 |
|
df-assa |
⊢ AssAlg = { 𝑤 ∈ ( LMod ∩ Ring ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ∀ 𝑟 ∈ ( Base ‘ 𝑓 ) ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) [ ( ·𝑠 ‘ 𝑤 ) / 𝑠 ] [ ( .r ‘ 𝑤 ) / 𝑡 ] ( ( ( 𝑟 𝑠 𝑥 ) 𝑡 𝑦 ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ∧ ( 𝑥 𝑡 ( 𝑟 𝑠 𝑦 ) ) = ( 𝑟 𝑠 ( 𝑥 𝑡 𝑦 ) ) ) } |
| 35 |
33 34
|
elrab2 |
⊢ ( 𝑊 ∈ AssAlg ↔ ( 𝑊 ∈ ( LMod ∩ Ring ) ∧ ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ) |
| 36 |
|
elin |
⊢ ( 𝑊 ∈ ( LMod ∩ Ring ) ↔ ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ) ) |
| 37 |
36
|
anbi1i |
⊢ ( ( 𝑊 ∈ ( LMod ∩ Ring ) ∧ ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ↔ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ) ∧ ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ) |
| 38 |
35 37
|
bitri |
⊢ ( 𝑊 ∈ AssAlg ↔ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ) ∧ ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ) |