Step |
Hyp |
Ref |
Expression |
1 |
|
isassad.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑊 ) ) |
2 |
|
isassad.f |
⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝑊 ) ) |
3 |
|
isassad.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐹 ) ) |
4 |
|
isassad.s |
⊢ ( 𝜑 → · = ( ·𝑠 ‘ 𝑊 ) ) |
5 |
|
isassad.t |
⊢ ( 𝜑 → × = ( .r ‘ 𝑊 ) ) |
6 |
|
isassad.1 |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
7 |
|
isassad.2 |
⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
8 |
|
isassad.3 |
⊢ ( 𝜑 → 𝐹 ∈ CRing ) |
9 |
|
isassad.4 |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐵 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) |
10 |
|
isassad.5 |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐵 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) |
11 |
2 8
|
eqeltrrd |
⊢ ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ CRing ) |
12 |
6 7 11
|
3jca |
⊢ ( 𝜑 → ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ ( Scalar ‘ 𝑊 ) ∈ CRing ) ) |
13 |
9 10
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐵 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) |
14 |
13
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) |
15 |
2
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
16 |
3 15
|
eqtrd |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
17 |
4
|
oveqd |
⊢ ( 𝜑 → ( 𝑟 · 𝑥 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ) |
18 |
|
eqidd |
⊢ ( 𝜑 → 𝑦 = 𝑦 ) |
19 |
5 17 18
|
oveq123d |
⊢ ( 𝜑 → ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) ) |
20 |
|
eqidd |
⊢ ( 𝜑 → 𝑟 = 𝑟 ) |
21 |
5
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 × 𝑦 ) = ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) |
22 |
4 20 21
|
oveq123d |
⊢ ( 𝜑 → ( 𝑟 · ( 𝑥 × 𝑦 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) |
23 |
19 22
|
eqeq12d |
⊢ ( 𝜑 → ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ↔ ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) |
24 |
|
eqidd |
⊢ ( 𝜑 → 𝑥 = 𝑥 ) |
25 |
4
|
oveqd |
⊢ ( 𝜑 → ( 𝑟 · 𝑦 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) |
26 |
5 24 25
|
oveq123d |
⊢ ( 𝜑 → ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) ) |
27 |
26 22
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ↔ ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) |
28 |
23 27
|
anbi12d |
⊢ ( 𝜑 → ( ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ↔ ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ∧ ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) ) |
29 |
1 28
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ∧ ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) ) |
30 |
1 29
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ∧ ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) ) |
31 |
16 30
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ↔ ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ∧ ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) ) |
32 |
14 31
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ∧ ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) |
33 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
34 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
35 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
36 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
37 |
|
eqid |
⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) |
38 |
33 34 35 36 37
|
isassa |
⊢ ( 𝑊 ∈ AssAlg ↔ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ ( Scalar ‘ 𝑊 ) ∈ CRing ) ∧ ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ∧ ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) ) |
39 |
12 32 38
|
sylanbrc |
⊢ ( 𝜑 → 𝑊 ∈ AssAlg ) |