| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isassad.v | ⊢ ( 𝜑  →  𝑉  =  ( Base ‘ 𝑊 ) ) | 
						
							| 2 |  | isassad.f | ⊢ ( 𝜑  →  𝐹  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 3 |  | isassad.b | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐹 ) ) | 
						
							| 4 |  | isassad.s | ⊢ ( 𝜑  →   ·   =  (  ·𝑠  ‘ 𝑊 ) ) | 
						
							| 5 |  | isassad.t | ⊢ ( 𝜑  →   ×   =  ( .r ‘ 𝑊 ) ) | 
						
							| 6 |  | isassad.1 | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 7 |  | isassad.2 | ⊢ ( 𝜑  →  𝑊  ∈  Ring ) | 
						
							| 8 |  | isassad.4 | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝐵  ∧  𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 ) )  →  ( ( 𝑟  ·  𝑥 )  ×  𝑦 )  =  ( 𝑟  ·  ( 𝑥  ×  𝑦 ) ) ) | 
						
							| 9 |  | isassad.5 | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝐵  ∧  𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 ) )  →  ( 𝑥  ×  ( 𝑟  ·  𝑦 ) )  =  ( 𝑟  ·  ( 𝑥  ×  𝑦 ) ) ) | 
						
							| 10 | 6 7 | jca | ⊢ ( 𝜑  →  ( 𝑊  ∈  LMod  ∧  𝑊  ∈  Ring ) ) | 
						
							| 11 | 8 9 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝐵  ∧  𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 ) )  →  ( ( ( 𝑟  ·  𝑥 )  ×  𝑦 )  =  ( 𝑟  ·  ( 𝑥  ×  𝑦 ) )  ∧  ( 𝑥  ×  ( 𝑟  ·  𝑦 ) )  =  ( 𝑟  ·  ( 𝑥  ×  𝑦 ) ) ) ) | 
						
							| 12 | 11 | ralrimivvva | ⊢ ( 𝜑  →  ∀ 𝑟  ∈  𝐵 ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  𝑉 ( ( ( 𝑟  ·  𝑥 )  ×  𝑦 )  =  ( 𝑟  ·  ( 𝑥  ×  𝑦 ) )  ∧  ( 𝑥  ×  ( 𝑟  ·  𝑦 ) )  =  ( 𝑟  ·  ( 𝑥  ×  𝑦 ) ) ) ) | 
						
							| 13 | 2 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ 𝐹 )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 14 | 3 13 | eqtrd | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 15 | 4 | oveqd | ⊢ ( 𝜑  →  ( 𝑟  ·  𝑥 )  =  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ) | 
						
							| 16 |  | eqidd | ⊢ ( 𝜑  →  𝑦  =  𝑦 ) | 
						
							| 17 | 5 15 16 | oveq123d | ⊢ ( 𝜑  →  ( ( 𝑟  ·  𝑥 )  ×  𝑦 )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) ) | 
						
							| 18 |  | eqidd | ⊢ ( 𝜑  →  𝑟  =  𝑟 ) | 
						
							| 19 | 5 | oveqd | ⊢ ( 𝜑  →  ( 𝑥  ×  𝑦 )  =  ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) | 
						
							| 20 | 4 18 19 | oveq123d | ⊢ ( 𝜑  →  ( 𝑟  ·  ( 𝑥  ×  𝑦 ) )  =  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) | 
						
							| 21 | 17 20 | eqeq12d | ⊢ ( 𝜑  →  ( ( ( 𝑟  ·  𝑥 )  ×  𝑦 )  =  ( 𝑟  ·  ( 𝑥  ×  𝑦 ) )  ↔  ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 )  =  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) | 
						
							| 22 |  | eqidd | ⊢ ( 𝜑  →  𝑥  =  𝑥 ) | 
						
							| 23 | 4 | oveqd | ⊢ ( 𝜑  →  ( 𝑟  ·  𝑦 )  =  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) | 
						
							| 24 | 5 22 23 | oveq123d | ⊢ ( 𝜑  →  ( 𝑥  ×  ( 𝑟  ·  𝑦 ) )  =  ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) ) | 
						
							| 25 | 24 20 | eqeq12d | ⊢ ( 𝜑  →  ( ( 𝑥  ×  ( 𝑟  ·  𝑦 ) )  =  ( 𝑟  ·  ( 𝑥  ×  𝑦 ) )  ↔  ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) )  =  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) | 
						
							| 26 | 21 25 | anbi12d | ⊢ ( 𝜑  →  ( ( ( ( 𝑟  ·  𝑥 )  ×  𝑦 )  =  ( 𝑟  ·  ( 𝑥  ×  𝑦 ) )  ∧  ( 𝑥  ×  ( 𝑟  ·  𝑦 ) )  =  ( 𝑟  ·  ( 𝑥  ×  𝑦 ) ) )  ↔  ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 )  =  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) )  ∧  ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) )  =  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) ) | 
						
							| 27 | 1 26 | raleqbidv | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  𝑉 ( ( ( 𝑟  ·  𝑥 )  ×  𝑦 )  =  ( 𝑟  ·  ( 𝑥  ×  𝑦 ) )  ∧  ( 𝑥  ×  ( 𝑟  ·  𝑦 ) )  =  ( 𝑟  ·  ( 𝑥  ×  𝑦 ) ) )  ↔  ∀ 𝑦  ∈  ( Base ‘ 𝑊 ) ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 )  =  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) )  ∧  ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) )  =  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) ) | 
						
							| 28 | 1 27 | raleqbidv | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  𝑉 ( ( ( 𝑟  ·  𝑥 )  ×  𝑦 )  =  ( 𝑟  ·  ( 𝑥  ×  𝑦 ) )  ∧  ( 𝑥  ×  ( 𝑟  ·  𝑦 ) )  =  ( 𝑟  ·  ( 𝑥  ×  𝑦 ) ) )  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝑊 ) ∀ 𝑦  ∈  ( Base ‘ 𝑊 ) ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 )  =  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) )  ∧  ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) )  =  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) ) | 
						
							| 29 | 14 28 | raleqbidv | ⊢ ( 𝜑  →  ( ∀ 𝑟  ∈  𝐵 ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  𝑉 ( ( ( 𝑟  ·  𝑥 )  ×  𝑦 )  =  ( 𝑟  ·  ( 𝑥  ×  𝑦 ) )  ∧  ( 𝑥  ×  ( 𝑟  ·  𝑦 ) )  =  ( 𝑟  ·  ( 𝑥  ×  𝑦 ) ) )  ↔  ∀ 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥  ∈  ( Base ‘ 𝑊 ) ∀ 𝑦  ∈  ( Base ‘ 𝑊 ) ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 )  =  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) )  ∧  ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) )  =  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) ) | 
						
							| 30 | 12 29 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥  ∈  ( Base ‘ 𝑊 ) ∀ 𝑦  ∈  ( Base ‘ 𝑊 ) ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 )  =  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) )  ∧  ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) )  =  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) | 
						
							| 31 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 32 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 33 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 34 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 35 |  | eqid | ⊢ ( .r ‘ 𝑊 )  =  ( .r ‘ 𝑊 ) | 
						
							| 36 | 31 32 33 34 35 | isassa | ⊢ ( 𝑊  ∈  AssAlg  ↔  ( ( 𝑊  ∈  LMod  ∧  𝑊  ∈  Ring )  ∧  ∀ 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥  ∈  ( Base ‘ 𝑊 ) ∀ 𝑦  ∈  ( Base ‘ 𝑊 ) ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 )  =  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) )  ∧  ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) )  =  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) ) | 
						
							| 37 | 10 30 36 | sylanbrc | ⊢ ( 𝜑  →  𝑊  ∈  AssAlg ) |