Metamath Proof Explorer


Theorem isat

Description: The predicate "is an atom". ( ela analog.) (Contributed by NM, 18-Sep-2011)

Ref Expression
Hypotheses isatom.b 𝐵 = ( Base ‘ 𝐾 )
isatom.z 0 = ( 0. ‘ 𝐾 )
isatom.c 𝐶 = ( ⋖ ‘ 𝐾 )
isatom.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion isat ( 𝐾𝐷 → ( 𝑃𝐴 ↔ ( 𝑃𝐵0 𝐶 𝑃 ) ) )

Proof

Step Hyp Ref Expression
1 isatom.b 𝐵 = ( Base ‘ 𝐾 )
2 isatom.z 0 = ( 0. ‘ 𝐾 )
3 isatom.c 𝐶 = ( ⋖ ‘ 𝐾 )
4 isatom.a 𝐴 = ( Atoms ‘ 𝐾 )
5 1 2 3 4 pats ( 𝐾𝐷𝐴 = { 𝑥𝐵0 𝐶 𝑥 } )
6 5 eleq2d ( 𝐾𝐷 → ( 𝑃𝐴𝑃 ∈ { 𝑥𝐵0 𝐶 𝑥 } ) )
7 breq2 ( 𝑥 = 𝑃 → ( 0 𝐶 𝑥0 𝐶 𝑃 ) )
8 7 elrab ( 𝑃 ∈ { 𝑥𝐵0 𝐶 𝑥 } ↔ ( 𝑃𝐵0 𝐶 𝑃 ) )
9 6 8 bitrdi ( 𝐾𝐷 → ( 𝑃𝐴 ↔ ( 𝑃𝐵0 𝐶 𝑃 ) ) )