Description: The predicate "is an atom". ( ela analog.) (Contributed by NM, 18-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isatom.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
isatom.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
isatom.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | ||
isatom.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
Assertion | isat | ⊢ ( 𝐾 ∈ 𝐷 → ( 𝑃 ∈ 𝐴 ↔ ( 𝑃 ∈ 𝐵 ∧ 0 𝐶 𝑃 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isatom.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
2 | isatom.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
3 | isatom.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | |
4 | isatom.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
5 | 1 2 3 4 | pats | ⊢ ( 𝐾 ∈ 𝐷 → 𝐴 = { 𝑥 ∈ 𝐵 ∣ 0 𝐶 𝑥 } ) |
6 | 5 | eleq2d | ⊢ ( 𝐾 ∈ 𝐷 → ( 𝑃 ∈ 𝐴 ↔ 𝑃 ∈ { 𝑥 ∈ 𝐵 ∣ 0 𝐶 𝑥 } ) ) |
7 | breq2 | ⊢ ( 𝑥 = 𝑃 → ( 0 𝐶 𝑥 ↔ 0 𝐶 𝑃 ) ) | |
8 | 7 | elrab | ⊢ ( 𝑃 ∈ { 𝑥 ∈ 𝐵 ∣ 0 𝐶 𝑥 } ↔ ( 𝑃 ∈ 𝐵 ∧ 0 𝐶 𝑃 ) ) |
9 | 6 8 | bitrdi | ⊢ ( 𝐾 ∈ 𝐷 → ( 𝑃 ∈ 𝐴 ↔ ( 𝑃 ∈ 𝐵 ∧ 0 𝐶 𝑃 ) ) ) |