| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isatlat.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							isatlat.g | 
							⊢ 𝐺  =  ( glb ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							isatlat.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							isatlat.z | 
							⊢  0   =  ( 0. ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							isatlat.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝐾  →  ( Base ‘ 𝑘 )  =  ( Base ‘ 𝐾 ) )  | 
						
						
							| 7 | 
							
								6 1
							 | 
							eqtr4di | 
							⊢ ( 𝑘  =  𝐾  →  ( Base ‘ 𝑘 )  =  𝐵 )  | 
						
						
							| 8 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝐾  →  ( glb ‘ 𝑘 )  =  ( glb ‘ 𝐾 ) )  | 
						
						
							| 9 | 
							
								8 2
							 | 
							eqtr4di | 
							⊢ ( 𝑘  =  𝐾  →  ( glb ‘ 𝑘 )  =  𝐺 )  | 
						
						
							| 10 | 
							
								9
							 | 
							dmeqd | 
							⊢ ( 𝑘  =  𝐾  →  dom  ( glb ‘ 𝑘 )  =  dom  𝐺 )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							eleq12d | 
							⊢ ( 𝑘  =  𝐾  →  ( ( Base ‘ 𝑘 )  ∈  dom  ( glb ‘ 𝑘 )  ↔  𝐵  ∈  dom  𝐺 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝐾  →  ( 0. ‘ 𝑘 )  =  ( 0. ‘ 𝐾 ) )  | 
						
						
							| 13 | 
							
								12 4
							 | 
							eqtr4di | 
							⊢ ( 𝑘  =  𝐾  →  ( 0. ‘ 𝑘 )  =   0  )  | 
						
						
							| 14 | 
							
								13
							 | 
							neeq2d | 
							⊢ ( 𝑘  =  𝐾  →  ( 𝑥  ≠  ( 0. ‘ 𝑘 )  ↔  𝑥  ≠   0  ) )  | 
						
						
							| 15 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝐾  →  ( Atoms ‘ 𝑘 )  =  ( Atoms ‘ 𝐾 ) )  | 
						
						
							| 16 | 
							
								15 5
							 | 
							eqtr4di | 
							⊢ ( 𝑘  =  𝐾  →  ( Atoms ‘ 𝑘 )  =  𝐴 )  | 
						
						
							| 17 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝐾  →  ( le ‘ 𝑘 )  =  ( le ‘ 𝐾 ) )  | 
						
						
							| 18 | 
							
								17 3
							 | 
							eqtr4di | 
							⊢ ( 𝑘  =  𝐾  →  ( le ‘ 𝑘 )  =   ≤  )  | 
						
						
							| 19 | 
							
								18
							 | 
							breqd | 
							⊢ ( 𝑘  =  𝐾  →  ( 𝑦 ( le ‘ 𝑘 ) 𝑥  ↔  𝑦  ≤  𝑥 ) )  | 
						
						
							| 20 | 
							
								16 19
							 | 
							rexeqbidv | 
							⊢ ( 𝑘  =  𝐾  →  ( ∃ 𝑦  ∈  ( Atoms ‘ 𝑘 ) 𝑦 ( le ‘ 𝑘 ) 𝑥  ↔  ∃ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 ) )  | 
						
						
							| 21 | 
							
								14 20
							 | 
							imbi12d | 
							⊢ ( 𝑘  =  𝐾  →  ( ( 𝑥  ≠  ( 0. ‘ 𝑘 )  →  ∃ 𝑦  ∈  ( Atoms ‘ 𝑘 ) 𝑦 ( le ‘ 𝑘 ) 𝑥 )  ↔  ( 𝑥  ≠   0   →  ∃ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 ) ) )  | 
						
						
							| 22 | 
							
								7 21
							 | 
							raleqbidv | 
							⊢ ( 𝑘  =  𝐾  →  ( ∀ 𝑥  ∈  ( Base ‘ 𝑘 ) ( 𝑥  ≠  ( 0. ‘ 𝑘 )  →  ∃ 𝑦  ∈  ( Atoms ‘ 𝑘 ) 𝑦 ( le ‘ 𝑘 ) 𝑥 )  ↔  ∀ 𝑥  ∈  𝐵 ( 𝑥  ≠   0   →  ∃ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 ) ) )  | 
						
						
							| 23 | 
							
								11 22
							 | 
							anbi12d | 
							⊢ ( 𝑘  =  𝐾  →  ( ( ( Base ‘ 𝑘 )  ∈  dom  ( glb ‘ 𝑘 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑘 ) ( 𝑥  ≠  ( 0. ‘ 𝑘 )  →  ∃ 𝑦  ∈  ( Atoms ‘ 𝑘 ) 𝑦 ( le ‘ 𝑘 ) 𝑥 ) )  ↔  ( 𝐵  ∈  dom  𝐺  ∧  ∀ 𝑥  ∈  𝐵 ( 𝑥  ≠   0   →  ∃ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 ) ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							df-atl | 
							⊢ AtLat  =  { 𝑘  ∈  Lat  ∣  ( ( Base ‘ 𝑘 )  ∈  dom  ( glb ‘ 𝑘 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑘 ) ( 𝑥  ≠  ( 0. ‘ 𝑘 )  →  ∃ 𝑦  ∈  ( Atoms ‘ 𝑘 ) 𝑦 ( le ‘ 𝑘 ) 𝑥 ) ) }  | 
						
						
							| 25 | 
							
								23 24
							 | 
							elrab2 | 
							⊢ ( 𝐾  ∈  AtLat  ↔  ( 𝐾  ∈  Lat  ∧  ( 𝐵  ∈  dom  𝐺  ∧  ∀ 𝑥  ∈  𝐵 ( 𝑥  ≠   0   →  ∃ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 ) ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							3anass | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝐵  ∈  dom  𝐺  ∧  ∀ 𝑥  ∈  𝐵 ( 𝑥  ≠   0   →  ∃ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 ) )  ↔  ( 𝐾  ∈  Lat  ∧  ( 𝐵  ∈  dom  𝐺  ∧  ∀ 𝑥  ∈  𝐵 ( 𝑥  ≠   0   →  ∃ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 ) ) ) )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							bitr4i | 
							⊢ ( 𝐾  ∈  AtLat  ↔  ( 𝐾  ∈  Lat  ∧  𝐵  ∈  dom  𝐺  ∧  ∀ 𝑥  ∈  𝐵 ( 𝑥  ≠   0   →  ∃ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 ) ) )  |