| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bloval.3 | ⊢ 𝑁  =  ( 𝑈  normOpOLD  𝑊 ) | 
						
							| 2 |  | bloval.4 | ⊢ 𝐿  =  ( 𝑈  LnOp  𝑊 ) | 
						
							| 3 |  | bloval.5 | ⊢ 𝐵  =  ( 𝑈  BLnOp  𝑊 ) | 
						
							| 4 | 1 2 3 | bloval | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec )  →  𝐵  =  { 𝑡  ∈  𝐿  ∣  ( 𝑁 ‘ 𝑡 )  <  +∞ } ) | 
						
							| 5 | 4 | eleq2d | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec )  →  ( 𝑇  ∈  𝐵  ↔  𝑇  ∈  { 𝑡  ∈  𝐿  ∣  ( 𝑁 ‘ 𝑡 )  <  +∞ } ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑡  =  𝑇  →  ( 𝑁 ‘ 𝑡 )  =  ( 𝑁 ‘ 𝑇 ) ) | 
						
							| 7 | 6 | breq1d | ⊢ ( 𝑡  =  𝑇  →  ( ( 𝑁 ‘ 𝑡 )  <  +∞  ↔  ( 𝑁 ‘ 𝑇 )  <  +∞ ) ) | 
						
							| 8 | 7 | elrab | ⊢ ( 𝑇  ∈  { 𝑡  ∈  𝐿  ∣  ( 𝑁 ‘ 𝑡 )  <  +∞ }  ↔  ( 𝑇  ∈  𝐿  ∧  ( 𝑁 ‘ 𝑇 )  <  +∞ ) ) | 
						
							| 9 | 5 8 | bitrdi | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec )  →  ( 𝑇  ∈  𝐵  ↔  ( 𝑇  ∈  𝐿  ∧  ( 𝑁 ‘ 𝑇 )  <  +∞ ) ) ) |