Step |
Hyp |
Ref |
Expression |
1 |
|
bloval.3 |
⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) |
2 |
|
bloval.4 |
⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) |
3 |
|
bloval.5 |
⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) |
4 |
1 2 3
|
bloval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝐵 = { 𝑡 ∈ 𝐿 ∣ ( 𝑁 ‘ 𝑡 ) < +∞ } ) |
5 |
4
|
eleq2d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇 ∈ 𝐵 ↔ 𝑇 ∈ { 𝑡 ∈ 𝐿 ∣ ( 𝑁 ‘ 𝑡 ) < +∞ } ) ) |
6 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( 𝑁 ‘ 𝑡 ) = ( 𝑁 ‘ 𝑇 ) ) |
7 |
6
|
breq1d |
⊢ ( 𝑡 = 𝑇 → ( ( 𝑁 ‘ 𝑡 ) < +∞ ↔ ( 𝑁 ‘ 𝑇 ) < +∞ ) ) |
8 |
7
|
elrab |
⊢ ( 𝑇 ∈ { 𝑡 ∈ 𝐿 ∣ ( 𝑁 ‘ 𝑡 ) < +∞ } ↔ ( 𝑇 ∈ 𝐿 ∧ ( 𝑁 ‘ 𝑇 ) < +∞ ) ) |
9 |
5 8
|
bitrdi |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇 ∈ 𝐵 ↔ ( 𝑇 ∈ 𝐿 ∧ ( 𝑁 ‘ 𝑇 ) < +∞ ) ) ) |