Step |
Hyp |
Ref |
Expression |
1 |
|
isblo3i.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
isblo3i.m |
⊢ 𝑀 = ( normCV ‘ 𝑈 ) |
3 |
|
isblo3i.n |
⊢ 𝑁 = ( normCV ‘ 𝑊 ) |
4 |
|
isblo3i.4 |
⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) |
5 |
|
isblo3i.5 |
⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) |
6 |
|
isblo3i.u |
⊢ 𝑈 ∈ NrmCVec |
7 |
|
isblo3i.w |
⊢ 𝑊 ∈ NrmCVec |
8 |
4 5
|
bloln |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵 ) → 𝑇 ∈ 𝐿 ) |
9 |
6 7 8
|
mp3an12 |
⊢ ( 𝑇 ∈ 𝐵 → 𝑇 ∈ 𝐿 ) |
10 |
|
eqid |
⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) |
11 |
|
eqid |
⊢ ( 𝑈 normOpOLD 𝑊 ) = ( 𝑈 normOpOLD 𝑊 ) |
12 |
1 10 11 5
|
nmblore |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵 ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) ∈ ℝ ) |
13 |
6 7 12
|
mp3an12 |
⊢ ( 𝑇 ∈ 𝐵 → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) ∈ ℝ ) |
14 |
1 2 3 11 5 6 7
|
nmblolbi |
⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) · ( 𝑀 ‘ 𝑦 ) ) ) |
15 |
14
|
ralrimiva |
⊢ ( 𝑇 ∈ 𝐵 → ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) · ( 𝑀 ‘ 𝑦 ) ) ) |
16 |
|
oveq1 |
⊢ ( 𝑥 = ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) → ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) = ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) · ( 𝑀 ‘ 𝑦 ) ) ) |
17 |
16
|
breq2d |
⊢ ( 𝑥 = ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) · ( 𝑀 ‘ 𝑦 ) ) ) ) |
18 |
17
|
ralbidv |
⊢ ( 𝑥 = ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) → ( ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) · ( 𝑀 ‘ 𝑦 ) ) ) ) |
19 |
18
|
rspcev |
⊢ ( ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) · ( 𝑀 ‘ 𝑦 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) |
20 |
13 15 19
|
syl2anc |
⊢ ( 𝑇 ∈ 𝐵 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) |
21 |
9 20
|
jca |
⊢ ( 𝑇 ∈ 𝐵 → ( 𝑇 ∈ 𝐿 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) ) |
22 |
|
simp1 |
⊢ ( ( 𝑇 ∈ 𝐿 ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) → 𝑇 ∈ 𝐿 ) |
23 |
1 10 4
|
lnof |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) |
24 |
6 7 23
|
mp3an12 |
⊢ ( 𝑇 ∈ 𝐿 → 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) |
25 |
1 10 11
|
nmoxr |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) ∈ ℝ* ) |
26 |
6 7 25
|
mp3an12 |
⊢ ( 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) ∈ ℝ* ) |
27 |
26
|
3ad2ant1 |
⊢ ( ( 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) ∈ ℝ* ) |
28 |
|
recn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) |
29 |
28
|
abscld |
⊢ ( 𝑥 ∈ ℝ → ( abs ‘ 𝑥 ) ∈ ℝ ) |
30 |
29
|
rexrd |
⊢ ( 𝑥 ∈ ℝ → ( abs ‘ 𝑥 ) ∈ ℝ* ) |
31 |
30
|
3ad2ant2 |
⊢ ( ( 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) → ( abs ‘ 𝑥 ) ∈ ℝ* ) |
32 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
33 |
32
|
a1i |
⊢ ( ( 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) → +∞ ∈ ℝ* ) |
34 |
1 10 2 3 11 6 7
|
nmoub3i |
⊢ ( ( 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) ≤ ( abs ‘ 𝑥 ) ) |
35 |
|
ltpnf |
⊢ ( ( abs ‘ 𝑥 ) ∈ ℝ → ( abs ‘ 𝑥 ) < +∞ ) |
36 |
29 35
|
syl |
⊢ ( 𝑥 ∈ ℝ → ( abs ‘ 𝑥 ) < +∞ ) |
37 |
36
|
3ad2ant2 |
⊢ ( ( 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) → ( abs ‘ 𝑥 ) < +∞ ) |
38 |
27 31 33 34 37
|
xrlelttrd |
⊢ ( ( 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) < +∞ ) |
39 |
24 38
|
syl3an1 |
⊢ ( ( 𝑇 ∈ 𝐿 ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) < +∞ ) |
40 |
11 4 5
|
isblo |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇 ∈ 𝐵 ↔ ( 𝑇 ∈ 𝐿 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) < +∞ ) ) ) |
41 |
6 7 40
|
mp2an |
⊢ ( 𝑇 ∈ 𝐵 ↔ ( 𝑇 ∈ 𝐿 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑇 ) < +∞ ) ) |
42 |
22 39 41
|
sylanbrc |
⊢ ( ( 𝑇 ∈ 𝐿 ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) → 𝑇 ∈ 𝐵 ) |
43 |
42
|
rexlimdv3a |
⊢ ( 𝑇 ∈ 𝐿 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) → 𝑇 ∈ 𝐵 ) ) |
44 |
43
|
imp |
⊢ ( ( 𝑇 ∈ 𝐿 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) → 𝑇 ∈ 𝐵 ) |
45 |
21 44
|
impbii |
⊢ ( 𝑇 ∈ 𝐵 ↔ ( 𝑇 ∈ 𝐿 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( 𝑀 ‘ 𝑦 ) ) ) ) |