Step |
Hyp |
Ref |
Expression |
1 |
|
isbndx |
⊢ ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) |
2 |
1
|
anbi1i |
⊢ ( ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ↔ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ∧ 𝑋 ≠ ∅ ) ) |
3 |
|
anass |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ∧ 𝑋 ≠ ∅ ) ↔ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ∧ 𝑋 ≠ ∅ ) ) ) |
4 |
|
r19.2z |
⊢ ( ( 𝑋 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) → ∃ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) |
5 |
4
|
ancoms |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ∧ 𝑋 ≠ ∅ ) → ∃ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) |
6 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) |
7 |
6
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ↔ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) |
8 |
|
oveq2 |
⊢ ( 𝑟 = 𝑠 → ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) = ( 𝑦 ( ball ‘ 𝑀 ) 𝑠 ) ) |
9 |
8
|
eqeq2d |
⊢ ( 𝑟 = 𝑠 → ( 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ↔ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑠 ) ) ) |
10 |
7 9
|
cbvrex2vw |
⊢ ( ∃ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ↔ ∃ 𝑦 ∈ 𝑋 ∃ 𝑠 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑠 ) ) |
11 |
|
2rp |
⊢ 2 ∈ ℝ+ |
12 |
|
rpmulcl |
⊢ ( ( 2 ∈ ℝ+ ∧ 𝑠 ∈ ℝ+ ) → ( 2 · 𝑠 ) ∈ ℝ+ ) |
13 |
11 12
|
mpan |
⊢ ( 𝑠 ∈ ℝ+ → ( 2 · 𝑠 ) ∈ ℝ+ ) |
14 |
13
|
ad2antll |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑠 ∈ ℝ+ ) ) → ( 2 · 𝑠 ) ∈ ℝ+ ) |
15 |
14
|
ad2antrr |
⊢ ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑠 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑠 ) ) → ( 2 · 𝑠 ) ∈ ℝ+ ) |
16 |
|
rpcn |
⊢ ( 𝑠 ∈ ℝ+ → 𝑠 ∈ ℂ ) |
17 |
|
2cnd |
⊢ ( 𝑠 ∈ ℝ+ → 2 ∈ ℂ ) |
18 |
|
2ne0 |
⊢ 2 ≠ 0 |
19 |
18
|
a1i |
⊢ ( 𝑠 ∈ ℝ+ → 2 ≠ 0 ) |
20 |
|
divcan3 |
⊢ ( ( 𝑠 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( 2 · 𝑠 ) / 2 ) = 𝑠 ) |
21 |
20
|
eqcomd |
⊢ ( ( 𝑠 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → 𝑠 = ( ( 2 · 𝑠 ) / 2 ) ) |
22 |
16 17 19 21
|
syl3anc |
⊢ ( 𝑠 ∈ ℝ+ → 𝑠 = ( ( 2 · 𝑠 ) / 2 ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝑠 ∈ ℝ+ → ( 𝑦 ( ball ‘ 𝑀 ) 𝑠 ) = ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) ) |
24 |
23
|
eqeq2d |
⊢ ( 𝑠 ∈ ℝ+ → ( 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑠 ) ↔ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) ) ) |
25 |
24
|
biimpd |
⊢ ( 𝑠 ∈ ℝ+ → ( 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑠 ) → 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) ) ) |
26 |
25
|
ad2antll |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑠 ∈ ℝ+ ) ) → ( 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑠 ) → 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) ) ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑠 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑠 ) → 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) ) ) |
28 |
27
|
imp |
⊢ ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑠 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑠 ) ) → 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) ) |
29 |
|
simpr |
⊢ ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑠 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) ) → 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) ) |
30 |
|
eleq2 |
⊢ ( 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ∈ ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) ) ) |
31 |
30
|
biimpac |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) ) → 𝑥 ∈ ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) ) |
32 |
|
2re |
⊢ 2 ∈ ℝ |
33 |
|
rpre |
⊢ ( 𝑠 ∈ ℝ+ → 𝑠 ∈ ℝ ) |
34 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝑠 ∈ ℝ ) → ( 2 · 𝑠 ) ∈ ℝ ) |
35 |
32 33 34
|
sylancr |
⊢ ( 𝑠 ∈ ℝ+ → ( 2 · 𝑠 ) ∈ ℝ ) |
36 |
|
blhalf |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( ( 2 · 𝑠 ) ∈ ℝ ∧ 𝑥 ∈ ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) ) ) → ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) ⊆ ( 𝑥 ( ball ‘ 𝑀 ) ( 2 · 𝑠 ) ) ) |
37 |
36
|
expr |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 2 · 𝑠 ) ∈ ℝ ) → ( 𝑥 ∈ ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) → ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) ⊆ ( 𝑥 ( ball ‘ 𝑀 ) ( 2 · 𝑠 ) ) ) ) |
38 |
35 37
|
sylan2 |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑠 ∈ ℝ+ ) → ( 𝑥 ∈ ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) → ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) ⊆ ( 𝑥 ( ball ‘ 𝑀 ) ( 2 · 𝑠 ) ) ) ) |
39 |
38
|
anasss |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑠 ∈ ℝ+ ) ) → ( 𝑥 ∈ ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) → ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) ⊆ ( 𝑥 ( ball ‘ 𝑀 ) ( 2 · 𝑠 ) ) ) ) |
40 |
39
|
imp |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑠 ∈ ℝ+ ) ) ∧ 𝑥 ∈ ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) ) → ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) ⊆ ( 𝑥 ( ball ‘ 𝑀 ) ( 2 · 𝑠 ) ) ) |
41 |
31 40
|
sylan2 |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑠 ∈ ℝ+ ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) ) ) → ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) ⊆ ( 𝑥 ( ball ‘ 𝑀 ) ( 2 · 𝑠 ) ) ) |
42 |
41
|
anassrs |
⊢ ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑠 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) ) → ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) ⊆ ( 𝑥 ( ball ‘ 𝑀 ) ( 2 · 𝑠 ) ) ) |
43 |
29 42
|
eqsstrd |
⊢ ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑠 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) ( ( 2 · 𝑠 ) / 2 ) ) ) → 𝑋 ⊆ ( 𝑥 ( ball ‘ 𝑀 ) ( 2 · 𝑠 ) ) ) |
44 |
28 43
|
syldan |
⊢ ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑠 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑠 ) ) → 𝑋 ⊆ ( 𝑥 ( ball ‘ 𝑀 ) ( 2 · 𝑠 ) ) ) |
45 |
13
|
adantl |
⊢ ( ( 𝑦 ∈ 𝑋 ∧ 𝑠 ∈ ℝ+ ) → ( 2 · 𝑠 ) ∈ ℝ+ ) |
46 |
|
rpxr |
⊢ ( ( 2 · 𝑠 ) ∈ ℝ+ → ( 2 · 𝑠 ) ∈ ℝ* ) |
47 |
|
blssm |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ ( 2 · 𝑠 ) ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝑀 ) ( 2 · 𝑠 ) ) ⊆ 𝑋 ) |
48 |
46 47
|
syl3an3 |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ ( 2 · 𝑠 ) ∈ ℝ+ ) → ( 𝑥 ( ball ‘ 𝑀 ) ( 2 · 𝑠 ) ) ⊆ 𝑋 ) |
49 |
48
|
3expa |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 2 · 𝑠 ) ∈ ℝ+ ) → ( 𝑥 ( ball ‘ 𝑀 ) ( 2 · 𝑠 ) ) ⊆ 𝑋 ) |
50 |
45 49
|
sylan2 |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑠 ∈ ℝ+ ) ) → ( 𝑥 ( ball ‘ 𝑀 ) ( 2 · 𝑠 ) ) ⊆ 𝑋 ) |
51 |
50
|
an32s |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑠 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ( ball ‘ 𝑀 ) ( 2 · 𝑠 ) ) ⊆ 𝑋 ) |
52 |
51
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑠 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑠 ) ) → ( 𝑥 ( ball ‘ 𝑀 ) ( 2 · 𝑠 ) ) ⊆ 𝑋 ) |
53 |
44 52
|
eqssd |
⊢ ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑠 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑠 ) ) → 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) ( 2 · 𝑠 ) ) ) |
54 |
|
oveq2 |
⊢ ( 𝑟 = ( 2 · 𝑠 ) → ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) = ( 𝑥 ( ball ‘ 𝑀 ) ( 2 · 𝑠 ) ) ) |
55 |
54
|
rspceeqv |
⊢ ( ( ( 2 · 𝑠 ) ∈ ℝ+ ∧ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) ( 2 · 𝑠 ) ) ) → ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) |
56 |
15 53 55
|
syl2anc |
⊢ ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑠 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑠 ) ) → ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) |
57 |
56
|
ex |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑠 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑠 ) → ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) |
58 |
57
|
ralrimdva |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑠 ∈ ℝ+ ) ) → ( 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑠 ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) |
59 |
58
|
rexlimdvva |
⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → ( ∃ 𝑦 ∈ 𝑋 ∃ 𝑠 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑠 ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) |
60 |
10 59
|
syl5bi |
⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → ( ∃ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) |
61 |
|
rexn0 |
⊢ ( ∃ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) → 𝑋 ≠ ∅ ) |
62 |
61
|
a1i |
⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → ( ∃ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) → 𝑋 ≠ ∅ ) ) |
63 |
60 62
|
jcad |
⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → ( ∃ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ∧ 𝑋 ≠ ∅ ) ) ) |
64 |
5 63
|
impbid2 |
⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → ( ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ∧ 𝑋 ≠ ∅ ) ↔ ∃ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) |
65 |
64
|
pm5.32i |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ∧ 𝑋 ≠ ∅ ) ) ↔ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ∃ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) |
66 |
2 3 65
|
3bitri |
⊢ ( ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ↔ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ∃ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) |