| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bndmet |
⊢ ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) → 𝑀 ∈ ( Met ‘ 𝑋 ) ) |
| 2 |
|
0re |
⊢ 0 ∈ ℝ |
| 3 |
2
|
ne0ii |
⊢ ℝ ≠ ∅ |
| 4 |
|
metf |
⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
| 5 |
4
|
ffnd |
⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → 𝑀 Fn ( 𝑋 × 𝑋 ) ) |
| 6 |
1 5
|
syl |
⊢ ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) → 𝑀 Fn ( 𝑋 × 𝑋 ) ) |
| 7 |
6
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ∧ 𝑋 = ∅ ) ∧ 𝑥 ∈ ℝ ) → 𝑀 Fn ( 𝑋 × 𝑋 ) ) |
| 8 |
1 4
|
syl |
⊢ ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) → 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
| 9 |
8
|
fdmd |
⊢ ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) → dom 𝑀 = ( 𝑋 × 𝑋 ) ) |
| 10 |
|
xpeq2 |
⊢ ( 𝑋 = ∅ → ( 𝑋 × 𝑋 ) = ( 𝑋 × ∅ ) ) |
| 11 |
|
xp0 |
⊢ ( 𝑋 × ∅ ) = ∅ |
| 12 |
10 11
|
eqtrdi |
⊢ ( 𝑋 = ∅ → ( 𝑋 × 𝑋 ) = ∅ ) |
| 13 |
9 12
|
sylan9eq |
⊢ ( ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ∧ 𝑋 = ∅ ) → dom 𝑀 = ∅ ) |
| 14 |
13
|
adantr |
⊢ ( ( ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ∧ 𝑋 = ∅ ) ∧ 𝑥 ∈ ℝ ) → dom 𝑀 = ∅ ) |
| 15 |
|
dm0rn0 |
⊢ ( dom 𝑀 = ∅ ↔ ran 𝑀 = ∅ ) |
| 16 |
14 15
|
sylib |
⊢ ( ( ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ∧ 𝑋 = ∅ ) ∧ 𝑥 ∈ ℝ ) → ran 𝑀 = ∅ ) |
| 17 |
|
0ss |
⊢ ∅ ⊆ ( 0 [,] 𝑥 ) |
| 18 |
16 17
|
eqsstrdi |
⊢ ( ( ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ∧ 𝑋 = ∅ ) ∧ 𝑥 ∈ ℝ ) → ran 𝑀 ⊆ ( 0 [,] 𝑥 ) ) |
| 19 |
|
df-f |
⊢ ( 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ↔ ( 𝑀 Fn ( 𝑋 × 𝑋 ) ∧ ran 𝑀 ⊆ ( 0 [,] 𝑥 ) ) ) |
| 20 |
7 18 19
|
sylanbrc |
⊢ ( ( ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ∧ 𝑋 = ∅ ) ∧ 𝑥 ∈ ℝ ) → 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) |
| 21 |
20
|
ralrimiva |
⊢ ( ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ∧ 𝑋 = ∅ ) → ∀ 𝑥 ∈ ℝ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) |
| 22 |
|
r19.2z |
⊢ ( ( ℝ ≠ ∅ ∧ ∀ 𝑥 ∈ ℝ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) → ∃ 𝑥 ∈ ℝ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) |
| 23 |
3 21 22
|
sylancr |
⊢ ( ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ∧ 𝑋 = ∅ ) → ∃ 𝑥 ∈ ℝ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) |
| 24 |
|
isbnd2 |
⊢ ( ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ↔ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ∃ 𝑦 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) |
| 25 |
24
|
simprbi |
⊢ ( ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) |
| 26 |
|
2re |
⊢ 2 ∈ ℝ |
| 27 |
|
simprlr |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) → 𝑟 ∈ ℝ+ ) |
| 28 |
27
|
rpred |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) → 𝑟 ∈ ℝ ) |
| 29 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( 2 · 𝑟 ) ∈ ℝ ) |
| 30 |
26 28 29
|
sylancr |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) → ( 2 · 𝑟 ) ∈ ℝ ) |
| 31 |
5
|
adantr |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) → 𝑀 Fn ( 𝑋 × 𝑋 ) ) |
| 32 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑀 ∈ ( Met ‘ 𝑋 ) ) |
| 33 |
|
simprl |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) |
| 34 |
|
simprr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑋 ) |
| 35 |
|
metcl |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑥 𝑀 𝑧 ) ∈ ℝ ) |
| 36 |
32 33 34 35
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝑀 𝑧 ) ∈ ℝ ) |
| 37 |
|
metge0 |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → 0 ≤ ( 𝑥 𝑀 𝑧 ) ) |
| 38 |
32 33 34 37
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 0 ≤ ( 𝑥 𝑀 𝑧 ) ) |
| 39 |
30
|
adantr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 2 · 𝑟 ) ∈ ℝ ) |
| 40 |
|
simprll |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) → 𝑦 ∈ 𝑋 ) |
| 41 |
40
|
adantr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) |
| 42 |
|
metcl |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 𝑀 𝑥 ) ∈ ℝ ) |
| 43 |
32 41 33 42
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 𝑀 𝑥 ) ∈ ℝ ) |
| 44 |
|
metcl |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 𝑀 𝑧 ) ∈ ℝ ) |
| 45 |
32 41 34 44
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 𝑀 𝑧 ) ∈ ℝ ) |
| 46 |
43 45
|
readdcld |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑦 𝑀 𝑥 ) + ( 𝑦 𝑀 𝑧 ) ) ∈ ℝ ) |
| 47 |
|
mettri2 |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝑀 𝑧 ) ≤ ( ( 𝑦 𝑀 𝑥 ) + ( 𝑦 𝑀 𝑧 ) ) ) |
| 48 |
32 41 33 34 47
|
syl13anc |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝑀 𝑧 ) ≤ ( ( 𝑦 𝑀 𝑥 ) + ( 𝑦 𝑀 𝑧 ) ) ) |
| 49 |
28
|
adantr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑟 ∈ ℝ ) |
| 50 |
|
simplrr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) |
| 51 |
33 50
|
eleqtrd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑥 ∈ ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) |
| 52 |
|
metxmet |
⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 53 |
32 52
|
syl |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 54 |
|
rpxr |
⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ* ) |
| 55 |
54
|
ad2antlr |
⊢ ( ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) → 𝑟 ∈ ℝ* ) |
| 56 |
55
|
ad2antlr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑟 ∈ ℝ* ) |
| 57 |
|
elbl2 |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ* ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑥 ∈ ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ↔ ( 𝑦 𝑀 𝑥 ) < 𝑟 ) ) |
| 58 |
53 56 41 33 57
|
syl22anc |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 ∈ ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ↔ ( 𝑦 𝑀 𝑥 ) < 𝑟 ) ) |
| 59 |
51 58
|
mpbid |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 𝑀 𝑥 ) < 𝑟 ) |
| 60 |
34 50
|
eleqtrd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑧 ∈ ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) |
| 61 |
|
elbl2 |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ* ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 ∈ ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ↔ ( 𝑦 𝑀 𝑧 ) < 𝑟 ) ) |
| 62 |
53 56 41 34 61
|
syl22anc |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 ∈ ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ↔ ( 𝑦 𝑀 𝑧 ) < 𝑟 ) ) |
| 63 |
60 62
|
mpbid |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 𝑀 𝑧 ) < 𝑟 ) |
| 64 |
43 45 49 49 59 63
|
lt2addd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑦 𝑀 𝑥 ) + ( 𝑦 𝑀 𝑧 ) ) < ( 𝑟 + 𝑟 ) ) |
| 65 |
49
|
recnd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑟 ∈ ℂ ) |
| 66 |
65
|
2timesd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 2 · 𝑟 ) = ( 𝑟 + 𝑟 ) ) |
| 67 |
64 66
|
breqtrrd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑦 𝑀 𝑥 ) + ( 𝑦 𝑀 𝑧 ) ) < ( 2 · 𝑟 ) ) |
| 68 |
36 46 39 48 67
|
lelttrd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝑀 𝑧 ) < ( 2 · 𝑟 ) ) |
| 69 |
36 39 68
|
ltled |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝑀 𝑧 ) ≤ ( 2 · 𝑟 ) ) |
| 70 |
|
elicc2 |
⊢ ( ( 0 ∈ ℝ ∧ ( 2 · 𝑟 ) ∈ ℝ ) → ( ( 𝑥 𝑀 𝑧 ) ∈ ( 0 [,] ( 2 · 𝑟 ) ) ↔ ( ( 𝑥 𝑀 𝑧 ) ∈ ℝ ∧ 0 ≤ ( 𝑥 𝑀 𝑧 ) ∧ ( 𝑥 𝑀 𝑧 ) ≤ ( 2 · 𝑟 ) ) ) ) |
| 71 |
2 39 70
|
sylancr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑥 𝑀 𝑧 ) ∈ ( 0 [,] ( 2 · 𝑟 ) ) ↔ ( ( 𝑥 𝑀 𝑧 ) ∈ ℝ ∧ 0 ≤ ( 𝑥 𝑀 𝑧 ) ∧ ( 𝑥 𝑀 𝑧 ) ≤ ( 2 · 𝑟 ) ) ) ) |
| 72 |
36 38 69 71
|
mpbir3and |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝑀 𝑧 ) ∈ ( 0 [,] ( 2 · 𝑟 ) ) ) |
| 73 |
72
|
ralrimivva |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑀 𝑧 ) ∈ ( 0 [,] ( 2 · 𝑟 ) ) ) |
| 74 |
|
ffnov |
⊢ ( 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] ( 2 · 𝑟 ) ) ↔ ( 𝑀 Fn ( 𝑋 × 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑀 𝑧 ) ∈ ( 0 [,] ( 2 · 𝑟 ) ) ) ) |
| 75 |
31 73 74
|
sylanbrc |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) → 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] ( 2 · 𝑟 ) ) ) |
| 76 |
|
oveq2 |
⊢ ( 𝑥 = ( 2 · 𝑟 ) → ( 0 [,] 𝑥 ) = ( 0 [,] ( 2 · 𝑟 ) ) ) |
| 77 |
76
|
feq3d |
⊢ ( 𝑥 = ( 2 · 𝑟 ) → ( 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ↔ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] ( 2 · 𝑟 ) ) ) ) |
| 78 |
77
|
rspcev |
⊢ ( ( ( 2 · 𝑟 ) ∈ ℝ ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] ( 2 · 𝑟 ) ) ) → ∃ 𝑥 ∈ ℝ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) |
| 79 |
30 75 78
|
syl2anc |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) → ∃ 𝑥 ∈ ℝ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) |
| 80 |
79
|
expr |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) → ∃ 𝑥 ∈ ℝ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ) |
| 81 |
80
|
rexlimdvva |
⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( ∃ 𝑦 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) → ∃ 𝑥 ∈ ℝ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ) |
| 82 |
1 81
|
syl |
⊢ ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) → ( ∃ 𝑦 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) → ∃ 𝑥 ∈ ℝ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ) |
| 83 |
82
|
adantr |
⊢ ( ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) → ( ∃ 𝑦 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) → ∃ 𝑥 ∈ ℝ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ) |
| 84 |
25 83
|
mpd |
⊢ ( ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) → ∃ 𝑥 ∈ ℝ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) |
| 85 |
23 84
|
pm2.61dane |
⊢ ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) → ∃ 𝑥 ∈ ℝ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) |
| 86 |
1 85
|
jca |
⊢ ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) → ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∃ 𝑥 ∈ ℝ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ) |
| 87 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) → 𝑀 ∈ ( Met ‘ 𝑋 ) ) |
| 88 |
|
simpllr |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝑥 ∈ ℝ ) |
| 89 |
87
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝑀 ∈ ( Met ‘ 𝑋 ) ) |
| 90 |
|
simpr |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) |
| 91 |
|
met0 |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 𝑀 𝑦 ) = 0 ) |
| 92 |
89 90 91
|
syl2anc |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 𝑀 𝑦 ) = 0 ) |
| 93 |
|
simplr |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) |
| 94 |
93 90 90
|
fovcdmd |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 𝑀 𝑦 ) ∈ ( 0 [,] 𝑥 ) ) |
| 95 |
|
elicc2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝑦 𝑀 𝑦 ) ∈ ( 0 [,] 𝑥 ) ↔ ( ( 𝑦 𝑀 𝑦 ) ∈ ℝ ∧ 0 ≤ ( 𝑦 𝑀 𝑦 ) ∧ ( 𝑦 𝑀 𝑦 ) ≤ 𝑥 ) ) ) |
| 96 |
2 88 95
|
sylancr |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑦 𝑀 𝑦 ) ∈ ( 0 [,] 𝑥 ) ↔ ( ( 𝑦 𝑀 𝑦 ) ∈ ℝ ∧ 0 ≤ ( 𝑦 𝑀 𝑦 ) ∧ ( 𝑦 𝑀 𝑦 ) ≤ 𝑥 ) ) ) |
| 97 |
94 96
|
mpbid |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑦 𝑀 𝑦 ) ∈ ℝ ∧ 0 ≤ ( 𝑦 𝑀 𝑦 ) ∧ ( 𝑦 𝑀 𝑦 ) ≤ 𝑥 ) ) |
| 98 |
97
|
simp3d |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 𝑀 𝑦 ) ≤ 𝑥 ) |
| 99 |
92 98
|
eqbrtrrd |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) → 0 ≤ 𝑥 ) |
| 100 |
88 99
|
ge0p1rpd |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 + 1 ) ∈ ℝ+ ) |
| 101 |
|
fovcdm |
⊢ ( ( 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 𝑀 𝑧 ) ∈ ( 0 [,] 𝑥 ) ) |
| 102 |
101
|
3expa |
⊢ ( ( ( 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 𝑀 𝑧 ) ∈ ( 0 [,] 𝑥 ) ) |
| 103 |
102
|
adantlll |
⊢ ( ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 𝑀 𝑧 ) ∈ ( 0 [,] 𝑥 ) ) |
| 104 |
|
elicc2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝑦 𝑀 𝑧 ) ∈ ( 0 [,] 𝑥 ) ↔ ( ( 𝑦 𝑀 𝑧 ) ∈ ℝ ∧ 0 ≤ ( 𝑦 𝑀 𝑧 ) ∧ ( 𝑦 𝑀 𝑧 ) ≤ 𝑥 ) ) ) |
| 105 |
2 88 104
|
sylancr |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑦 𝑀 𝑧 ) ∈ ( 0 [,] 𝑥 ) ↔ ( ( 𝑦 𝑀 𝑧 ) ∈ ℝ ∧ 0 ≤ ( 𝑦 𝑀 𝑧 ) ∧ ( 𝑦 𝑀 𝑧 ) ≤ 𝑥 ) ) ) |
| 106 |
105
|
adantr |
⊢ ( ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝑦 𝑀 𝑧 ) ∈ ( 0 [,] 𝑥 ) ↔ ( ( 𝑦 𝑀 𝑧 ) ∈ ℝ ∧ 0 ≤ ( 𝑦 𝑀 𝑧 ) ∧ ( 𝑦 𝑀 𝑧 ) ≤ 𝑥 ) ) ) |
| 107 |
103 106
|
mpbid |
⊢ ( ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝑦 𝑀 𝑧 ) ∈ ℝ ∧ 0 ≤ ( 𝑦 𝑀 𝑧 ) ∧ ( 𝑦 𝑀 𝑧 ) ≤ 𝑥 ) ) |
| 108 |
107
|
simp1d |
⊢ ( ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 𝑀 𝑧 ) ∈ ℝ ) |
| 109 |
88
|
adantr |
⊢ ( ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → 𝑥 ∈ ℝ ) |
| 110 |
|
peano2re |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 + 1 ) ∈ ℝ ) |
| 111 |
88 110
|
syl |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 + 1 ) ∈ ℝ ) |
| 112 |
111
|
adantr |
⊢ ( ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑥 + 1 ) ∈ ℝ ) |
| 113 |
107
|
simp3d |
⊢ ( ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 𝑀 𝑧 ) ≤ 𝑥 ) |
| 114 |
109
|
ltp1d |
⊢ ( ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → 𝑥 < ( 𝑥 + 1 ) ) |
| 115 |
108 109 112 113 114
|
lelttrd |
⊢ ( ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 𝑀 𝑧 ) < ( 𝑥 + 1 ) ) |
| 116 |
115
|
ralrimiva |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) → ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑀 𝑧 ) < ( 𝑥 + 1 ) ) |
| 117 |
|
rabid2 |
⊢ ( 𝑋 = { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝑀 𝑧 ) < ( 𝑥 + 1 ) } ↔ ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑀 𝑧 ) < ( 𝑥 + 1 ) ) |
| 118 |
116 117
|
sylibr |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝑋 = { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝑀 𝑧 ) < ( 𝑥 + 1 ) } ) |
| 119 |
89 52
|
syl |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 120 |
111
|
rexrd |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 + 1 ) ∈ ℝ* ) |
| 121 |
|
blval |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ ( 𝑥 + 1 ) ∈ ℝ* ) → ( 𝑦 ( ball ‘ 𝑀 ) ( 𝑥 + 1 ) ) = { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝑀 𝑧 ) < ( 𝑥 + 1 ) } ) |
| 122 |
119 90 120 121
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 ( ball ‘ 𝑀 ) ( 𝑥 + 1 ) ) = { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝑀 𝑧 ) < ( 𝑥 + 1 ) } ) |
| 123 |
118 122
|
eqtr4d |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) ( 𝑥 + 1 ) ) ) |
| 124 |
|
oveq2 |
⊢ ( 𝑟 = ( 𝑥 + 1 ) → ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) = ( 𝑦 ( ball ‘ 𝑀 ) ( 𝑥 + 1 ) ) ) |
| 125 |
124
|
rspceeqv |
⊢ ( ( ( 𝑥 + 1 ) ∈ ℝ+ ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) ( 𝑥 + 1 ) ) ) → ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) |
| 126 |
100 123 125
|
syl2anc |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ∧ 𝑦 ∈ 𝑋 ) → ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) |
| 127 |
126
|
ralrimiva |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) → ∀ 𝑦 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) |
| 128 |
|
isbnd |
⊢ ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) |
| 129 |
87 127 128
|
sylanbrc |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) → 𝑀 ∈ ( Bnd ‘ 𝑋 ) ) |
| 130 |
129
|
r19.29an |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∃ 𝑥 ∈ ℝ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) → 𝑀 ∈ ( Bnd ‘ 𝑋 ) ) |
| 131 |
86 130
|
impbii |
⊢ ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∃ 𝑥 ∈ ℝ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) ) |