| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isbnd3 | 
							⊢ ( 𝑀  ∈  ( Bnd ‘ 𝑋 )  ↔  ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ∃ 𝑥  ∈  ℝ 𝑀 : ( 𝑋  ×  𝑋 ) ⟶ ( 0 [,] 𝑥 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							metf | 
							⊢ ( 𝑀  ∈  ( Met ‘ 𝑋 )  →  𝑀 : ( 𝑋  ×  𝑋 ) ⟶ ℝ )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  ℝ )  →  𝑀 : ( 𝑋  ×  𝑋 ) ⟶ ℝ )  | 
						
						
							| 4 | 
							
								
							 | 
							ffn | 
							⊢ ( 𝑀 : ( 𝑋  ×  𝑋 ) ⟶ ℝ  →  𝑀  Fn  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ffnov | 
							⊢ ( 𝑀 : ( 𝑋  ×  𝑋 ) ⟶ ( 0 [,] 𝑥 )  ↔  ( 𝑀  Fn  ( 𝑋  ×  𝑋 )  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑀 𝑧 )  ∈  ( 0 [,] 𝑥 ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							baib | 
							⊢ ( 𝑀  Fn  ( 𝑋  ×  𝑋 )  →  ( 𝑀 : ( 𝑋  ×  𝑋 ) ⟶ ( 0 [,] 𝑥 )  ↔  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑀 𝑧 )  ∈  ( 0 [,] 𝑥 ) ) )  | 
						
						
							| 7 | 
							
								3 4 6
							 | 
							3syl | 
							⊢ ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  ℝ )  →  ( 𝑀 : ( 𝑋  ×  𝑋 ) ⟶ ( 0 [,] 𝑥 )  ↔  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑀 𝑧 )  ∈  ( 0 [,] 𝑥 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							0red | 
							⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  0  ∈  ℝ )  | 
						
						
							| 9 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 10 | 
							
								
							 | 
							metcl | 
							⊢ ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  →  ( 𝑦 𝑀 𝑧 )  ∈  ℝ )  | 
						
						
							| 11 | 
							
								10
							 | 
							3expb | 
							⊢ ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( 𝑦 𝑀 𝑧 )  ∈  ℝ )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantlr | 
							⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( 𝑦 𝑀 𝑧 )  ∈  ℝ )  | 
						
						
							| 13 | 
							
								
							 | 
							metge0 | 
							⊢ ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  →  0  ≤  ( 𝑦 𝑀 𝑧 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							3expb | 
							⊢ ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  0  ≤  ( 𝑦 𝑀 𝑧 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantlr | 
							⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  0  ≤  ( 𝑦 𝑀 𝑧 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							elicc2 | 
							⊢ ( ( 0  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( ( 𝑦 𝑀 𝑧 )  ∈  ( 0 [,] 𝑥 )  ↔  ( ( 𝑦 𝑀 𝑧 )  ∈  ℝ  ∧  0  ≤  ( 𝑦 𝑀 𝑧 )  ∧  ( 𝑦 𝑀 𝑧 )  ≤  𝑥 ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							df-3an | 
							⊢ ( ( ( 𝑦 𝑀 𝑧 )  ∈  ℝ  ∧  0  ≤  ( 𝑦 𝑀 𝑧 )  ∧  ( 𝑦 𝑀 𝑧 )  ≤  𝑥 )  ↔  ( ( ( 𝑦 𝑀 𝑧 )  ∈  ℝ  ∧  0  ≤  ( 𝑦 𝑀 𝑧 ) )  ∧  ( 𝑦 𝑀 𝑧 )  ≤  𝑥 ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							bitrdi | 
							⊢ ( ( 0  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( ( 𝑦 𝑀 𝑧 )  ∈  ( 0 [,] 𝑥 )  ↔  ( ( ( 𝑦 𝑀 𝑧 )  ∈  ℝ  ∧  0  ≤  ( 𝑦 𝑀 𝑧 ) )  ∧  ( 𝑦 𝑀 𝑧 )  ≤  𝑥 ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							baibd | 
							⊢ ( ( ( 0  ∈  ℝ  ∧  𝑥  ∈  ℝ )  ∧  ( ( 𝑦 𝑀 𝑧 )  ∈  ℝ  ∧  0  ≤  ( 𝑦 𝑀 𝑧 ) ) )  →  ( ( 𝑦 𝑀 𝑧 )  ∈  ( 0 [,] 𝑥 )  ↔  ( 𝑦 𝑀 𝑧 )  ≤  𝑥 ) )  | 
						
						
							| 20 | 
							
								8 9 12 15 19
							 | 
							syl22anc | 
							⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( 𝑦 𝑀 𝑧 )  ∈  ( 0 [,] 𝑥 )  ↔  ( 𝑦 𝑀 𝑧 )  ≤  𝑥 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							2ralbidva | 
							⊢ ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  ℝ )  →  ( ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑀 𝑧 )  ∈  ( 0 [,] 𝑥 )  ↔  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑀 𝑧 )  ≤  𝑥 ) )  | 
						
						
							| 22 | 
							
								7 21
							 | 
							bitrd | 
							⊢ ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  ℝ )  →  ( 𝑀 : ( 𝑋  ×  𝑋 ) ⟶ ( 0 [,] 𝑥 )  ↔  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑀 𝑧 )  ≤  𝑥 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							rexbidva | 
							⊢ ( 𝑀  ∈  ( Met ‘ 𝑋 )  →  ( ∃ 𝑥  ∈  ℝ 𝑀 : ( 𝑋  ×  𝑋 ) ⟶ ( 0 [,] 𝑥 )  ↔  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑀 𝑧 )  ≤  𝑥 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							pm5.32i | 
							⊢ ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ∃ 𝑥  ∈  ℝ 𝑀 : ( 𝑋  ×  𝑋 ) ⟶ ( 0 [,] 𝑥 ) )  ↔  ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑀 𝑧 )  ≤  𝑥 ) )  | 
						
						
							| 25 | 
							
								1 24
							 | 
							bitri | 
							⊢ ( 𝑀  ∈  ( Bnd ‘ 𝑋 )  ↔  ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑀 𝑧 )  ≤  𝑥 ) )  |