Metamath Proof Explorer


Theorem isbndx

Description: A "bounded extended metric" (meaning that it satisfies the same condition as a bounded metric, but with "metric" replaced with "extended metric") is a metric and thus is bounded in the conventional sense. (Contributed by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion isbndx ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ∀ 𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) )

Proof

Step Hyp Ref Expression
1 isbnd ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) )
2 metxmet ( 𝑀 ∈ ( Met ‘ 𝑋 ) → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) )
3 simpr ( ( ∀ 𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ∧ 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) )
4 xmetf ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ℝ* )
5 ffn ( 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ℝ*𝑀 Fn ( 𝑋 × 𝑋 ) )
6 3 4 5 3syl ( ( ∀ 𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ∧ 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) → 𝑀 Fn ( 𝑋 × 𝑋 ) )
7 simprr ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) → 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) )
8 rpxr ( 𝑟 ∈ ℝ+𝑟 ∈ ℝ* )
9 eqid ( 𝑀 “ ℝ ) = ( 𝑀 “ ℝ )
10 9 blssec ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥𝑋𝑟 ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ⊆ [ 𝑥 ] ( 𝑀 “ ℝ ) )
11 10 3expa ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥𝑋 ) ∧ 𝑟 ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ⊆ [ 𝑥 ] ( 𝑀 “ ℝ ) )
12 8 11 sylan2 ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥𝑋 ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ⊆ [ 𝑥 ] ( 𝑀 “ ℝ ) )
13 12 adantrr ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) → ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ⊆ [ 𝑥 ] ( 𝑀 “ ℝ ) )
14 7 13 eqsstrd ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) → 𝑋 ⊆ [ 𝑥 ] ( 𝑀 “ ℝ ) )
15 14 sselda ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ 𝑦𝑋 ) → 𝑦 ∈ [ 𝑥 ] ( 𝑀 “ ℝ ) )
16 vex 𝑦 ∈ V
17 vex 𝑥 ∈ V
18 16 17 elec ( 𝑦 ∈ [ 𝑥 ] ( 𝑀 “ ℝ ) ↔ 𝑥 ( 𝑀 “ ℝ ) 𝑦 )
19 15 18 sylib ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ 𝑦𝑋 ) → 𝑥 ( 𝑀 “ ℝ ) 𝑦 )
20 9 xmeterval ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ( 𝑀 “ ℝ ) 𝑦 ↔ ( 𝑥𝑋𝑦𝑋 ∧ ( 𝑥 𝑀 𝑦 ) ∈ ℝ ) ) )
21 20 ad3antrrr ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ 𝑦𝑋 ) → ( 𝑥 ( 𝑀 “ ℝ ) 𝑦 ↔ ( 𝑥𝑋𝑦𝑋 ∧ ( 𝑥 𝑀 𝑦 ) ∈ ℝ ) ) )
22 19 21 mpbid ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ 𝑦𝑋 ) → ( 𝑥𝑋𝑦𝑋 ∧ ( 𝑥 𝑀 𝑦 ) ∈ ℝ ) )
23 22 simp3d ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ 𝑦𝑋 ) → ( 𝑥 𝑀 𝑦 ) ∈ ℝ )
24 23 ralrimiva ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) → ∀ 𝑦𝑋 ( 𝑥 𝑀 𝑦 ) ∈ ℝ )
25 24 rexlimdvaa ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥𝑋 ) → ( ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) → ∀ 𝑦𝑋 ( 𝑥 𝑀 𝑦 ) ∈ ℝ ) )
26 25 ralimdva ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → ( ∀ 𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) → ∀ 𝑥𝑋𝑦𝑋 ( 𝑥 𝑀 𝑦 ) ∈ ℝ ) )
27 26 impcom ( ( ∀ 𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ∧ 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) → ∀ 𝑥𝑋𝑦𝑋 ( 𝑥 𝑀 𝑦 ) ∈ ℝ )
28 ffnov ( 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ℝ ↔ ( 𝑀 Fn ( 𝑋 × 𝑋 ) ∧ ∀ 𝑥𝑋𝑦𝑋 ( 𝑥 𝑀 𝑦 ) ∈ ℝ ) )
29 6 27 28 sylanbrc ( ( ∀ 𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ∧ 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) → 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ℝ )
30 ismet2 ( 𝑀 ∈ ( Met ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) )
31 3 29 30 sylanbrc ( ( ∀ 𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ∧ 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) → 𝑀 ∈ ( Met ‘ 𝑋 ) )
32 31 ex ( ∀ 𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) → ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → 𝑀 ∈ ( Met ‘ 𝑋 ) ) )
33 2 32 impbid2 ( ∀ 𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) → ( 𝑀 ∈ ( Met ‘ 𝑋 ) ↔ 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) )
34 33 pm5.32ri ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ↔ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ∀ 𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) )
35 1 34 bitri ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ∀ 𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) )