| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isbnd |
⊢ ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) |
| 2 |
|
metxmet |
⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 3 |
|
simpr |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ∧ 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 4 |
|
xmetf |
⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
| 5 |
|
ffn |
⊢ ( 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ℝ* → 𝑀 Fn ( 𝑋 × 𝑋 ) ) |
| 6 |
3 4 5
|
3syl |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ∧ 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) → 𝑀 Fn ( 𝑋 × 𝑋 ) ) |
| 7 |
|
simprr |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) → 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) |
| 8 |
|
rpxr |
⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ* ) |
| 9 |
|
eqid |
⊢ ( ◡ 𝑀 “ ℝ ) = ( ◡ 𝑀 “ ℝ ) |
| 10 |
9
|
blssec |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ⊆ [ 𝑥 ] ( ◡ 𝑀 “ ℝ ) ) |
| 11 |
10
|
3expa |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑟 ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ⊆ [ 𝑥 ] ( ◡ 𝑀 “ ℝ ) ) |
| 12 |
8 11
|
sylan2 |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ⊆ [ 𝑥 ] ( ◡ 𝑀 “ ℝ ) ) |
| 13 |
12
|
adantrr |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) → ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ⊆ [ 𝑥 ] ( ◡ 𝑀 “ ℝ ) ) |
| 14 |
7 13
|
eqsstrd |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) → 𝑋 ⊆ [ 𝑥 ] ( ◡ 𝑀 “ ℝ ) ) |
| 15 |
14
|
sselda |
⊢ ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ [ 𝑥 ] ( ◡ 𝑀 “ ℝ ) ) |
| 16 |
|
vex |
⊢ 𝑦 ∈ V |
| 17 |
|
vex |
⊢ 𝑥 ∈ V |
| 18 |
16 17
|
elec |
⊢ ( 𝑦 ∈ [ 𝑥 ] ( ◡ 𝑀 “ ℝ ) ↔ 𝑥 ( ◡ 𝑀 “ ℝ ) 𝑦 ) |
| 19 |
15 18
|
sylib |
⊢ ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ 𝑦 ∈ 𝑋 ) → 𝑥 ( ◡ 𝑀 “ ℝ ) 𝑦 ) |
| 20 |
9
|
xmeterval |
⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ( ◡ 𝑀 “ ℝ ) 𝑦 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝑥 𝑀 𝑦 ) ∈ ℝ ) ) ) |
| 21 |
20
|
ad3antrrr |
⊢ ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( ◡ 𝑀 “ ℝ ) 𝑦 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝑥 𝑀 𝑦 ) ∈ ℝ ) ) ) |
| 22 |
19 21
|
mpbid |
⊢ ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝑥 𝑀 𝑦 ) ∈ ℝ ) ) |
| 23 |
22
|
simp3d |
⊢ ( ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝑀 𝑦 ) ∈ ℝ ) |
| 24 |
23
|
ralrimiva |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) → ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) ∈ ℝ ) |
| 25 |
24
|
rexlimdvaa |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) → ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) ∈ ℝ ) ) |
| 26 |
25
|
ralimdva |
⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) ∈ ℝ ) ) |
| 27 |
26
|
impcom |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ∧ 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) ∈ ℝ ) |
| 28 |
|
ffnov |
⊢ ( 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ℝ ↔ ( 𝑀 Fn ( 𝑋 × 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) ∈ ℝ ) ) |
| 29 |
6 27 28
|
sylanbrc |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ∧ 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) → 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
| 30 |
|
ismet2 |
⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) ) |
| 31 |
3 29 30
|
sylanbrc |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ∧ 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) → 𝑀 ∈ ( Met ‘ 𝑋 ) ) |
| 32 |
31
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) → ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → 𝑀 ∈ ( Met ‘ 𝑋 ) ) ) |
| 33 |
2 32
|
impbid2 |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) → ( 𝑀 ∈ ( Met ‘ 𝑋 ) ↔ 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) ) |
| 34 |
33
|
pm5.32ri |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ↔ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) |
| 35 |
1 34
|
bitri |
⊢ ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ 𝑋 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) |