| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cardon |
⊢ ( card ‘ 𝐴 ) ∈ On |
| 2 |
|
eleq1 |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ( card ‘ 𝐴 ) ∈ On ↔ 𝐴 ∈ On ) ) |
| 3 |
1 2
|
mpbii |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → 𝐴 ∈ On ) |
| 4 |
|
eqss |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 ↔ ( ( card ‘ 𝐴 ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( card ‘ 𝐴 ) ) ) |
| 5 |
|
cardonle |
⊢ ( 𝐴 ∈ On → ( card ‘ 𝐴 ) ⊆ 𝐴 ) |
| 6 |
5
|
biantrurd |
⊢ ( 𝐴 ∈ On → ( 𝐴 ⊆ ( card ‘ 𝐴 ) ↔ ( ( card ‘ 𝐴 ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( card ‘ 𝐴 ) ) ) ) |
| 7 |
4 6
|
bitr4id |
⊢ ( 𝐴 ∈ On → ( ( card ‘ 𝐴 ) = 𝐴 ↔ 𝐴 ⊆ ( card ‘ 𝐴 ) ) ) |
| 8 |
|
oncardval |
⊢ ( 𝐴 ∈ On → ( card ‘ 𝐴 ) = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ) |
| 9 |
8
|
sseq2d |
⊢ ( 𝐴 ∈ On → ( 𝐴 ⊆ ( card ‘ 𝐴 ) ↔ 𝐴 ⊆ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ) ) |
| 10 |
7 9
|
bitrd |
⊢ ( 𝐴 ∈ On → ( ( card ‘ 𝐴 ) = 𝐴 ↔ 𝐴 ⊆ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ) ) |
| 11 |
|
ssint |
⊢ ( 𝐴 ⊆ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ↔ ∀ 𝑥 ∈ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } 𝐴 ⊆ 𝑥 ) |
| 12 |
|
breq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ≈ 𝐴 ↔ 𝑥 ≈ 𝐴 ) ) |
| 13 |
12
|
elrab |
⊢ ( 𝑥 ∈ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ↔ ( 𝑥 ∈ On ∧ 𝑥 ≈ 𝐴 ) ) |
| 14 |
|
ensymb |
⊢ ( 𝑥 ≈ 𝐴 ↔ 𝐴 ≈ 𝑥 ) |
| 15 |
14
|
anbi2i |
⊢ ( ( 𝑥 ∈ On ∧ 𝑥 ≈ 𝐴 ) ↔ ( 𝑥 ∈ On ∧ 𝐴 ≈ 𝑥 ) ) |
| 16 |
13 15
|
bitri |
⊢ ( 𝑥 ∈ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ↔ ( 𝑥 ∈ On ∧ 𝐴 ≈ 𝑥 ) ) |
| 17 |
16
|
imbi1i |
⊢ ( ( 𝑥 ∈ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } → 𝐴 ⊆ 𝑥 ) ↔ ( ( 𝑥 ∈ On ∧ 𝐴 ≈ 𝑥 ) → 𝐴 ⊆ 𝑥 ) ) |
| 18 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝐴 ≈ 𝑥 ) → 𝐴 ⊆ 𝑥 ) ↔ ( 𝑥 ∈ On → ( 𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥 ) ) ) |
| 19 |
17 18
|
bitri |
⊢ ( ( 𝑥 ∈ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } → 𝐴 ⊆ 𝑥 ) ↔ ( 𝑥 ∈ On → ( 𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥 ) ) ) |
| 20 |
19
|
ralbii2 |
⊢ ( ∀ 𝑥 ∈ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } 𝐴 ⊆ 𝑥 ↔ ∀ 𝑥 ∈ On ( 𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥 ) ) |
| 21 |
11 20
|
bitri |
⊢ ( 𝐴 ⊆ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ↔ ∀ 𝑥 ∈ On ( 𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥 ) ) |
| 22 |
10 21
|
bitrdi |
⊢ ( 𝐴 ∈ On → ( ( card ‘ 𝐴 ) = 𝐴 ↔ ∀ 𝑥 ∈ On ( 𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥 ) ) ) |
| 23 |
3 22
|
biadanii |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 ↔ ( 𝐴 ∈ On ∧ ∀ 𝑥 ∈ On ( 𝐴 ≈ 𝑥 → 𝐴 ⊆ 𝑥 ) ) ) |