Step |
Hyp |
Ref |
Expression |
1 |
|
iscat.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
iscat.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
iscat.o |
⊢ · = ( comp ‘ 𝐶 ) |
4 |
|
fvexd |
⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) ∈ V ) |
5 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) ) |
6 |
5 1
|
eqtr4di |
⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = 𝐵 ) |
7 |
|
fvexd |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → ( Hom ‘ 𝑐 ) ∈ V ) |
8 |
|
simpl |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → 𝑐 = 𝐶 ) |
9 |
8
|
fveq2d |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → ( Hom ‘ 𝑐 ) = ( Hom ‘ 𝐶 ) ) |
10 |
9 2
|
eqtr4di |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → ( Hom ‘ 𝑐 ) = 𝐻 ) |
11 |
|
fvexd |
⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( comp ‘ 𝑐 ) ∈ V ) |
12 |
|
simpll |
⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → 𝑐 = 𝐶 ) |
13 |
12
|
fveq2d |
⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( comp ‘ 𝑐 ) = ( comp ‘ 𝐶 ) ) |
14 |
13 3
|
eqtr4di |
⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( comp ‘ 𝑐 ) = · ) |
15 |
|
simpllr |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → 𝑏 = 𝐵 ) |
16 |
|
simplr |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ℎ = 𝐻 ) |
17 |
16
|
oveqd |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 𝑥 ℎ 𝑥 ) = ( 𝑥 𝐻 𝑥 ) ) |
18 |
16
|
oveqd |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 𝑦 ℎ 𝑥 ) = ( 𝑦 𝐻 𝑥 ) ) |
19 |
|
simpr |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → 𝑜 = · ) |
20 |
19
|
oveqd |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) = ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) ) |
21 |
20
|
oveqd |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) ) |
22 |
21
|
eqeq1d |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ↔ ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ) ) |
23 |
18 22
|
raleqbidv |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ) ) |
24 |
16
|
oveqd |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 𝑥 ℎ 𝑦 ) = ( 𝑥 𝐻 𝑦 ) ) |
25 |
19
|
oveqd |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) = ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) ) |
26 |
25
|
oveqd |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) ) |
27 |
26
|
eqeq1d |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ↔ ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) |
28 |
24 27
|
raleqbidv |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) |
29 |
23 28
|
anbi12d |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
30 |
15 29
|
raleqbidv |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
31 |
17 30
|
rexeqbidv |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ∃ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
32 |
16
|
oveqd |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 𝑦 ℎ 𝑧 ) = ( 𝑦 𝐻 𝑧 ) ) |
33 |
19
|
oveqd |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) = ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) ) |
34 |
33
|
oveqd |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) |
35 |
16
|
oveqd |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 𝑥 ℎ 𝑧 ) = ( 𝑥 𝐻 𝑧 ) ) |
36 |
34 35
|
eleq12d |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ↔ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) |
37 |
16
|
oveqd |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 𝑧 ℎ 𝑤 ) = ( 𝑧 𝐻 𝑤 ) ) |
38 |
19
|
oveqd |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) = ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) ) |
39 |
19
|
oveqd |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) = ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) ) |
40 |
39
|
oveqd |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) = ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ) |
41 |
|
eqidd |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → 𝑓 = 𝑓 ) |
42 |
38 40 41
|
oveq123d |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) ) |
43 |
19
|
oveqd |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) = ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ) |
44 |
|
eqidd |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → 𝑘 = 𝑘 ) |
45 |
43 44 34
|
oveq123d |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) |
46 |
42 45
|
eqeq12d |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ↔ ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) |
47 |
37 46
|
raleqbidv |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) |
48 |
15 47
|
raleqbidv |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) |
49 |
36 48
|
anbi12d |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ↔ ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) |
50 |
32 49
|
raleqbidv |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) |
51 |
24 50
|
raleqbidv |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) |
52 |
15 51
|
raleqbidv |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) |
53 |
15 52
|
raleqbidv |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) |
54 |
31 53
|
anbi12d |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ( ∃ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ) ↔ ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) ) |
55 |
15 54
|
raleqbidv |
⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ∀ 𝑥 ∈ 𝑏 ( ∃ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) ) |
56 |
11 14 55
|
sbcied2 |
⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( [ ( comp ‘ 𝑐 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ( ∃ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) ) |
57 |
7 10 56
|
sbcied2 |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → ( [ ( Hom ‘ 𝑐 ) / ℎ ] [ ( comp ‘ 𝑐 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ( ∃ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) ) |
58 |
4 6 57
|
sbcied2 |
⊢ ( 𝑐 = 𝐶 → ( [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ℎ ] [ ( comp ‘ 𝑐 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ( ∃ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) ) |
59 |
|
df-cat |
⊢ Cat = { 𝑐 ∣ [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ℎ ] [ ( comp ‘ 𝑐 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ( ∃ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ) } |
60 |
58 59
|
elab2g |
⊢ ( 𝐶 ∈ 𝑉 → ( 𝐶 ∈ Cat ↔ ∀ 𝑥 ∈ 𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) ) |