| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscatd2.b | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐶 ) ) | 
						
							| 2 |  | iscatd2.h | ⊢ ( 𝜑  →  𝐻  =  ( Hom  ‘ 𝐶 ) ) | 
						
							| 3 |  | iscatd2.o | ⊢ ( 𝜑  →   ·   =  ( comp ‘ 𝐶 ) ) | 
						
							| 4 |  | iscatd2.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑉 ) | 
						
							| 5 |  | iscatd2.ps | ⊢ ( 𝜓  ↔  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) ) ) | 
						
							| 6 |  | iscatd2.1 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →   1   ∈  ( 𝑦 𝐻 𝑦 ) ) | 
						
							| 7 |  | iscatd2.2 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  (  1  ( 〈 𝑥 ,  𝑦 〉  ·  𝑦 ) 𝑓 )  =  𝑓 ) | 
						
							| 8 |  | iscatd2.3 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑔 ( 〈 𝑦 ,  𝑦 〉  ·  𝑧 )  1  )  =  𝑔 ) | 
						
							| 9 |  | iscatd2.4 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑧 ) 𝑓 )  ∈  ( 𝑥 𝐻 𝑧 ) ) | 
						
							| 10 |  | iscatd2.5 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝑘 ( 〈 𝑦 ,  𝑧 〉  ·  𝑤 ) 𝑔 ) ( 〈 𝑥 ,  𝑦 〉  ·  𝑤 ) 𝑓 )  =  ( 𝑘 ( 〈 𝑥 ,  𝑧 〉  ·  𝑤 ) ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑧 ) 𝑓 ) ) ) | 
						
							| 11 | 6 | ne0d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( 𝑦 𝐻 𝑦 )  ≠  ∅ ) | 
						
							| 12 | 11 | 3ad2antr1 | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑎 𝐻 𝑦 ) ) )  →  ( 𝑦 𝐻 𝑦 )  ≠  ∅ ) | 
						
							| 13 |  | n0 | ⊢ ( ( 𝑦 𝐻 𝑦 )  ≠  ∅  ↔  ∃ 𝑔 𝑔  ∈  ( 𝑦 𝐻 𝑦 ) ) | 
						
							| 14 | 12 13 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑎 𝐻 𝑦 ) ) )  →  ∃ 𝑔 𝑔  ∈  ( 𝑦 𝐻 𝑦 ) ) | 
						
							| 15 |  | n0 | ⊢ ( ( 𝑦 𝐻 𝑦 )  ≠  ∅  ↔  ∃ 𝑘 𝑘  ∈  ( 𝑦 𝐻 𝑦 ) ) | 
						
							| 16 | 12 15 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑎 𝐻 𝑦 ) ) )  →  ∃ 𝑘 𝑘  ∈  ( 𝑦 𝐻 𝑦 ) ) | 
						
							| 17 |  | exdistrv | ⊢ ( ∃ 𝑔 ∃ 𝑘 ( 𝑔  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑦 𝐻 𝑦 ) )  ↔  ( ∃ 𝑔 𝑔  ∈  ( 𝑦 𝐻 𝑦 )  ∧  ∃ 𝑘 𝑘  ∈  ( 𝑦 𝐻 𝑦 ) ) ) | 
						
							| 18 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑎 𝐻 𝑦 ) ) )  ∧  ( 𝑔  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑦 𝐻 𝑦 ) ) )  →  𝜑 ) | 
						
							| 19 |  | simplr2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑎 𝐻 𝑦 ) ) )  ∧  ( 𝑔  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑦 𝐻 𝑦 ) ) )  →  𝑎  ∈  𝐵 ) | 
						
							| 20 |  | simplr1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑎 𝐻 𝑦 ) ) )  ∧  ( 𝑔  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑦 𝐻 𝑦 ) ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 21 | 19 20 | jca | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑎 𝐻 𝑦 ) ) )  ∧  ( 𝑔  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑦 𝐻 𝑦 ) ) )  →  ( 𝑎  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 22 |  | simplr3 | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑎 𝐻 𝑦 ) ) )  ∧  ( 𝑔  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑦 𝐻 𝑦 ) ) )  →  𝑟  ∈  ( 𝑎 𝐻 𝑦 ) ) | 
						
							| 23 |  | simprl | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑎 𝐻 𝑦 ) ) )  ∧  ( 𝑔  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑦 𝐻 𝑦 ) ) )  →  𝑔  ∈  ( 𝑦 𝐻 𝑦 ) ) | 
						
							| 24 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑎 𝐻 𝑦 ) ) )  ∧  ( 𝑔  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑦 𝐻 𝑦 ) ) )  →  𝑘  ∈  ( 𝑦 𝐻 𝑦 ) ) | 
						
							| 25 | 22 23 24 | 3jca | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑎 𝐻 𝑦 ) ) )  ∧  ( 𝑔  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑦 𝐻 𝑦 ) ) )  →  ( 𝑟  ∈  ( 𝑎 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑦 𝐻 𝑦 ) ) ) | 
						
							| 26 |  | simplll | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →  𝑥  =  𝑎 ) | 
						
							| 27 | 26 | eleq1d | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →  ( 𝑥  ∈  𝐵  ↔  𝑎  ∈  𝐵 ) ) | 
						
							| 28 | 27 | anbi1d | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ↔  ( 𝑎  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) ) | 
						
							| 29 |  | simpllr | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →  𝑧  =  𝑦 ) | 
						
							| 30 | 29 | eleq1d | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →  ( 𝑧  ∈  𝐵  ↔  𝑦  ∈  𝐵 ) ) | 
						
							| 31 |  | simplr | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →  𝑤  =  𝑦 ) | 
						
							| 32 | 31 | eleq1d | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →  ( 𝑤  ∈  𝐵  ↔  𝑦  ∈  𝐵 ) ) | 
						
							| 33 | 30 32 | anbi12d | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →  ( ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ↔  ( 𝑦  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) ) | 
						
							| 34 |  | anidm | ⊢ ( ( 𝑦  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ↔  𝑦  ∈  𝐵 ) | 
						
							| 35 | 33 34 | bitrdi | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →  ( ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ↔  𝑦  ∈  𝐵 ) ) | 
						
							| 36 |  | simpr | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →  𝑓  =  𝑟 ) | 
						
							| 37 | 26 | oveq1d | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →  ( 𝑥 𝐻 𝑦 )  =  ( 𝑎 𝐻 𝑦 ) ) | 
						
							| 38 | 36 37 | eleq12d | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ↔  𝑟  ∈  ( 𝑎 𝐻 𝑦 ) ) ) | 
						
							| 39 | 29 | oveq2d | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →  ( 𝑦 𝐻 𝑧 )  =  ( 𝑦 𝐻 𝑦 ) ) | 
						
							| 40 | 39 | eleq2d | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →  ( 𝑔  ∈  ( 𝑦 𝐻 𝑧 )  ↔  𝑔  ∈  ( 𝑦 𝐻 𝑦 ) ) ) | 
						
							| 41 | 29 31 | oveq12d | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →  ( 𝑧 𝐻 𝑤 )  =  ( 𝑦 𝐻 𝑦 ) ) | 
						
							| 42 | 41 | eleq2d | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →  ( 𝑘  ∈  ( 𝑧 𝐻 𝑤 )  ↔  𝑘  ∈  ( 𝑦 𝐻 𝑦 ) ) ) | 
						
							| 43 | 38 40 42 | 3anbi123d | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →  ( ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) )  ↔  ( 𝑟  ∈  ( 𝑎 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑦 𝐻 𝑦 ) ) ) ) | 
						
							| 44 | 28 35 43 | 3anbi123d | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →  ( ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) )  ↔  ( ( 𝑎  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  𝑦  ∈  𝐵  ∧  ( 𝑟  ∈  ( 𝑎 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑦 𝐻 𝑦 ) ) ) ) ) | 
						
							| 45 | 5 44 | bitrid | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →  ( 𝜓  ↔  ( ( 𝑎  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  𝑦  ∈  𝐵  ∧  ( 𝑟  ∈  ( 𝑎 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑦 𝐻 𝑦 ) ) ) ) ) | 
						
							| 46 | 45 | anbi2d | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →  ( ( 𝜑  ∧  𝜓 )  ↔  ( 𝜑  ∧  ( ( 𝑎  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  𝑦  ∈  𝐵  ∧  ( 𝑟  ∈  ( 𝑎 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑦 𝐻 𝑦 ) ) ) ) ) ) | 
						
							| 47 | 26 | opeq1d | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →  〈 𝑥 ,  𝑦 〉  =  〈 𝑎 ,  𝑦 〉 ) | 
						
							| 48 | 47 | oveq1d | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →  ( 〈 𝑥 ,  𝑦 〉  ·  𝑦 )  =  ( 〈 𝑎 ,  𝑦 〉  ·  𝑦 ) ) | 
						
							| 49 |  | eqidd | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →   1   =   1  ) | 
						
							| 50 | 48 49 36 | oveq123d | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →  (  1  ( 〈 𝑥 ,  𝑦 〉  ·  𝑦 ) 𝑓 )  =  (  1  ( 〈 𝑎 ,  𝑦 〉  ·  𝑦 ) 𝑟 ) ) | 
						
							| 51 | 50 36 | eqeq12d | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →  ( (  1  ( 〈 𝑥 ,  𝑦 〉  ·  𝑦 ) 𝑓 )  =  𝑓  ↔  (  1  ( 〈 𝑎 ,  𝑦 〉  ·  𝑦 ) 𝑟 )  =  𝑟 ) ) | 
						
							| 52 | 46 51 | imbi12d | ⊢ ( ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  ∧  𝑓  =  𝑟 )  →  ( ( ( 𝜑  ∧  𝜓 )  →  (  1  ( 〈 𝑥 ,  𝑦 〉  ·  𝑦 ) 𝑓 )  =  𝑓 )  ↔  ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  𝑦  ∈  𝐵  ∧  ( 𝑟  ∈  ( 𝑎 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑦 𝐻 𝑦 ) ) ) )  →  (  1  ( 〈 𝑎 ,  𝑦 〉  ·  𝑦 ) 𝑟 )  =  𝑟 ) ) ) | 
						
							| 53 | 52 | sbiedvw | ⊢ ( ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  ∧  𝑤  =  𝑦 )  →  ( [ 𝑟  /  𝑓 ] ( ( 𝜑  ∧  𝜓 )  →  (  1  ( 〈 𝑥 ,  𝑦 〉  ·  𝑦 ) 𝑓 )  =  𝑓 )  ↔  ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  𝑦  ∈  𝐵  ∧  ( 𝑟  ∈  ( 𝑎 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑦 𝐻 𝑦 ) ) ) )  →  (  1  ( 〈 𝑎 ,  𝑦 〉  ·  𝑦 ) 𝑟 )  =  𝑟 ) ) ) | 
						
							| 54 | 53 | sbiedvw | ⊢ ( ( 𝑥  =  𝑎  ∧  𝑧  =  𝑦 )  →  ( [ 𝑦  /  𝑤 ] [ 𝑟  /  𝑓 ] ( ( 𝜑  ∧  𝜓 )  →  (  1  ( 〈 𝑥 ,  𝑦 〉  ·  𝑦 ) 𝑓 )  =  𝑓 )  ↔  ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  𝑦  ∈  𝐵  ∧  ( 𝑟  ∈  ( 𝑎 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑦 𝐻 𝑦 ) ) ) )  →  (  1  ( 〈 𝑎 ,  𝑦 〉  ·  𝑦 ) 𝑟 )  =  𝑟 ) ) ) | 
						
							| 55 | 54 | sbiedvw | ⊢ ( 𝑥  =  𝑎  →  ( [ 𝑦  /  𝑧 ] [ 𝑦  /  𝑤 ] [ 𝑟  /  𝑓 ] ( ( 𝜑  ∧  𝜓 )  →  (  1  ( 〈 𝑥 ,  𝑦 〉  ·  𝑦 ) 𝑓 )  =  𝑓 )  ↔  ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  𝑦  ∈  𝐵  ∧  ( 𝑟  ∈  ( 𝑎 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑦 𝐻 𝑦 ) ) ) )  →  (  1  ( 〈 𝑎 ,  𝑦 〉  ·  𝑦 ) 𝑟 )  =  𝑟 ) ) ) | 
						
							| 56 | 7 | sbt | ⊢ [ 𝑟  /  𝑓 ] ( ( 𝜑  ∧  𝜓 )  →  (  1  ( 〈 𝑥 ,  𝑦 〉  ·  𝑦 ) 𝑓 )  =  𝑓 ) | 
						
							| 57 | 56 | sbt | ⊢ [ 𝑦  /  𝑤 ] [ 𝑟  /  𝑓 ] ( ( 𝜑  ∧  𝜓 )  →  (  1  ( 〈 𝑥 ,  𝑦 〉  ·  𝑦 ) 𝑓 )  =  𝑓 ) | 
						
							| 58 | 57 | sbt | ⊢ [ 𝑦  /  𝑧 ] [ 𝑦  /  𝑤 ] [ 𝑟  /  𝑓 ] ( ( 𝜑  ∧  𝜓 )  →  (  1  ( 〈 𝑥 ,  𝑦 〉  ·  𝑦 ) 𝑓 )  =  𝑓 ) | 
						
							| 59 | 55 58 | chvarvv | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  𝑦  ∈  𝐵  ∧  ( 𝑟  ∈  ( 𝑎 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑦 𝐻 𝑦 ) ) ) )  →  (  1  ( 〈 𝑎 ,  𝑦 〉  ·  𝑦 ) 𝑟 )  =  𝑟 ) | 
						
							| 60 | 18 21 20 25 59 | syl13anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑎 𝐻 𝑦 ) ) )  ∧  ( 𝑔  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑦 𝐻 𝑦 ) ) )  →  (  1  ( 〈 𝑎 ,  𝑦 〉  ·  𝑦 ) 𝑟 )  =  𝑟 ) | 
						
							| 61 | 60 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑎 𝐻 𝑦 ) ) )  →  ( ( 𝑔  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑦 𝐻 𝑦 ) )  →  (  1  ( 〈 𝑎 ,  𝑦 〉  ·  𝑦 ) 𝑟 )  =  𝑟 ) ) | 
						
							| 62 | 61 | exlimdvv | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑎 𝐻 𝑦 ) ) )  →  ( ∃ 𝑔 ∃ 𝑘 ( 𝑔  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑦 𝐻 𝑦 ) )  →  (  1  ( 〈 𝑎 ,  𝑦 〉  ·  𝑦 ) 𝑟 )  =  𝑟 ) ) | 
						
							| 63 | 17 62 | biimtrrid | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑎 𝐻 𝑦 ) ) )  →  ( ( ∃ 𝑔 𝑔  ∈  ( 𝑦 𝐻 𝑦 )  ∧  ∃ 𝑘 𝑘  ∈  ( 𝑦 𝐻 𝑦 ) )  →  (  1  ( 〈 𝑎 ,  𝑦 〉  ·  𝑦 ) 𝑟 )  =  𝑟 ) ) | 
						
							| 64 | 14 16 63 | mp2and | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑎 𝐻 𝑦 ) ) )  →  (  1  ( 〈 𝑎 ,  𝑦 〉  ·  𝑦 ) 𝑟 )  =  𝑟 ) | 
						
							| 65 | 11 | 3ad2antr1 | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 ) ) )  →  ( 𝑦 𝐻 𝑦 )  ≠  ∅ ) | 
						
							| 66 |  | n0 | ⊢ ( ( 𝑦 𝐻 𝑦 )  ≠  ∅  ↔  ∃ 𝑓 𝑓  ∈  ( 𝑦 𝐻 𝑦 ) ) | 
						
							| 67 | 65 66 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 ) ) )  →  ∃ 𝑓 𝑓  ∈  ( 𝑦 𝐻 𝑦 ) ) | 
						
							| 68 |  | id | ⊢ ( 𝑦  =  𝑎  →  𝑦  =  𝑎 ) | 
						
							| 69 | 68 68 | oveq12d | ⊢ ( 𝑦  =  𝑎  →  ( 𝑦 𝐻 𝑦 )  =  ( 𝑎 𝐻 𝑎 ) ) | 
						
							| 70 | 69 | neeq1d | ⊢ ( 𝑦  =  𝑎  →  ( ( 𝑦 𝐻 𝑦 )  ≠  ∅  ↔  ( 𝑎 𝐻 𝑎 )  ≠  ∅ ) ) | 
						
							| 71 | 11 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝐵 ( 𝑦 𝐻 𝑦 )  ≠  ∅ ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 ) ) )  →  ∀ 𝑦  ∈  𝐵 ( 𝑦 𝐻 𝑦 )  ≠  ∅ ) | 
						
							| 73 |  | simpr2 | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 ) ) )  →  𝑎  ∈  𝐵 ) | 
						
							| 74 | 70 72 73 | rspcdva | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 ) ) )  →  ( 𝑎 𝐻 𝑎 )  ≠  ∅ ) | 
						
							| 75 |  | n0 | ⊢ ( ( 𝑎 𝐻 𝑎 )  ≠  ∅  ↔  ∃ 𝑘 𝑘  ∈  ( 𝑎 𝐻 𝑎 ) ) | 
						
							| 76 | 74 75 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 ) ) )  →  ∃ 𝑘 𝑘  ∈  ( 𝑎 𝐻 𝑎 ) ) | 
						
							| 77 |  | exdistrv | ⊢ ( ∃ 𝑓 ∃ 𝑘 ( 𝑓  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑎 𝐻 𝑎 ) )  ↔  ( ∃ 𝑓 𝑓  ∈  ( 𝑦 𝐻 𝑦 )  ∧  ∃ 𝑘 𝑘  ∈  ( 𝑎 𝐻 𝑎 ) ) ) | 
						
							| 78 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 ) ) )  ∧  ( 𝑓  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑎 𝐻 𝑎 ) ) )  →  𝜑 ) | 
						
							| 79 |  | simplr1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 ) ) )  ∧  ( 𝑓  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑎 𝐻 𝑎 ) ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 80 |  | simplr2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 ) ) )  ∧  ( 𝑓  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑎 𝐻 𝑎 ) ) )  →  𝑎  ∈  𝐵 ) | 
						
							| 81 |  | simprl | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 ) ) )  ∧  ( 𝑓  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑎 𝐻 𝑎 ) ) )  →  𝑓  ∈  ( 𝑦 𝐻 𝑦 ) ) | 
						
							| 82 |  | simplr3 | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 ) ) )  ∧  ( 𝑓  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑎 𝐻 𝑎 ) ) )  →  𝑟  ∈  ( 𝑦 𝐻 𝑎 ) ) | 
						
							| 83 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 ) ) )  ∧  ( 𝑓  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑎 𝐻 𝑎 ) ) )  →  𝑘  ∈  ( 𝑎 𝐻 𝑎 ) ) | 
						
							| 84 | 81 82 83 | 3jca | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 ) ) )  ∧  ( 𝑓  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑎 𝐻 𝑎 ) ) )  →  ( 𝑓  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑘  ∈  ( 𝑎 𝐻 𝑎 ) ) ) | 
						
							| 85 |  | simplll | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →  𝑥  =  𝑦 ) | 
						
							| 86 | 85 | eleq1d | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →  ( 𝑥  ∈  𝐵  ↔  𝑦  ∈  𝐵 ) ) | 
						
							| 87 | 86 | anbi1d | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ↔  ( 𝑦  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) ) | 
						
							| 88 | 87 34 | bitrdi | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ↔  𝑦  ∈  𝐵 ) ) | 
						
							| 89 |  | simpllr | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →  𝑧  =  𝑎 ) | 
						
							| 90 | 89 | eleq1d | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →  ( 𝑧  ∈  𝐵  ↔  𝑎  ∈  𝐵 ) ) | 
						
							| 91 |  | simplr | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →  𝑤  =  𝑎 ) | 
						
							| 92 | 91 | eleq1d | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →  ( 𝑤  ∈  𝐵  ↔  𝑎  ∈  𝐵 ) ) | 
						
							| 93 | 90 92 | anbi12d | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →  ( ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ↔  ( 𝑎  ∈  𝐵  ∧  𝑎  ∈  𝐵 ) ) ) | 
						
							| 94 |  | anidm | ⊢ ( ( 𝑎  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  ↔  𝑎  ∈  𝐵 ) | 
						
							| 95 | 93 94 | bitrdi | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →  ( ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ↔  𝑎  ∈  𝐵 ) ) | 
						
							| 96 | 85 | oveq1d | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →  ( 𝑥 𝐻 𝑦 )  =  ( 𝑦 𝐻 𝑦 ) ) | 
						
							| 97 | 96 | eleq2d | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ↔  𝑓  ∈  ( 𝑦 𝐻 𝑦 ) ) ) | 
						
							| 98 |  | simpr | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →  𝑔  =  𝑟 ) | 
						
							| 99 | 89 | oveq2d | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →  ( 𝑦 𝐻 𝑧 )  =  ( 𝑦 𝐻 𝑎 ) ) | 
						
							| 100 | 98 99 | eleq12d | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →  ( 𝑔  ∈  ( 𝑦 𝐻 𝑧 )  ↔  𝑟  ∈  ( 𝑦 𝐻 𝑎 ) ) ) | 
						
							| 101 | 89 91 | oveq12d | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →  ( 𝑧 𝐻 𝑤 )  =  ( 𝑎 𝐻 𝑎 ) ) | 
						
							| 102 | 101 | eleq2d | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →  ( 𝑘  ∈  ( 𝑧 𝐻 𝑤 )  ↔  𝑘  ∈  ( 𝑎 𝐻 𝑎 ) ) ) | 
						
							| 103 | 97 100 102 | 3anbi123d | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →  ( ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) )  ↔  ( 𝑓  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑘  ∈  ( 𝑎 𝐻 𝑎 ) ) ) ) | 
						
							| 104 | 88 95 103 | 3anbi123d | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →  ( ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) )  ↔  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  ( 𝑓  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑘  ∈  ( 𝑎 𝐻 𝑎 ) ) ) ) ) | 
						
							| 105 | 5 104 | bitrid | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →  ( 𝜓  ↔  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  ( 𝑓  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑘  ∈  ( 𝑎 𝐻 𝑎 ) ) ) ) ) | 
						
							| 106 | 105 | anbi2d | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →  ( ( 𝜑  ∧  𝜓 )  ↔  ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  ( 𝑓  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑘  ∈  ( 𝑎 𝐻 𝑎 ) ) ) ) ) ) | 
						
							| 107 | 89 | oveq2d | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →  ( 〈 𝑦 ,  𝑦 〉  ·  𝑧 )  =  ( 〈 𝑦 ,  𝑦 〉  ·  𝑎 ) ) | 
						
							| 108 |  | eqidd | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →   1   =   1  ) | 
						
							| 109 | 107 98 108 | oveq123d | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →  ( 𝑔 ( 〈 𝑦 ,  𝑦 〉  ·  𝑧 )  1  )  =  ( 𝑟 ( 〈 𝑦 ,  𝑦 〉  ·  𝑎 )  1  ) ) | 
						
							| 110 | 109 98 | eqeq12d | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →  ( ( 𝑔 ( 〈 𝑦 ,  𝑦 〉  ·  𝑧 )  1  )  =  𝑔  ↔  ( 𝑟 ( 〈 𝑦 ,  𝑦 〉  ·  𝑎 )  1  )  =  𝑟 ) ) | 
						
							| 111 | 106 110 | imbi12d | ⊢ ( ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  ∧  𝑔  =  𝑟 )  →  ( ( ( 𝜑  ∧  𝜓 )  →  ( 𝑔 ( 〈 𝑦 ,  𝑦 〉  ·  𝑧 )  1  )  =  𝑔 )  ↔  ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  ( 𝑓  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑘  ∈  ( 𝑎 𝐻 𝑎 ) ) ) )  →  ( 𝑟 ( 〈 𝑦 ,  𝑦 〉  ·  𝑎 )  1  )  =  𝑟 ) ) ) | 
						
							| 112 | 111 | sbiedvw | ⊢ ( ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  ∧  𝑤  =  𝑎 )  →  ( [ 𝑟  /  𝑔 ] ( ( 𝜑  ∧  𝜓 )  →  ( 𝑔 ( 〈 𝑦 ,  𝑦 〉  ·  𝑧 )  1  )  =  𝑔 )  ↔  ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  ( 𝑓  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑘  ∈  ( 𝑎 𝐻 𝑎 ) ) ) )  →  ( 𝑟 ( 〈 𝑦 ,  𝑦 〉  ·  𝑎 )  1  )  =  𝑟 ) ) ) | 
						
							| 113 | 112 | sbiedvw | ⊢ ( ( 𝑥  =  𝑦  ∧  𝑧  =  𝑎 )  →  ( [ 𝑎  /  𝑤 ] [ 𝑟  /  𝑔 ] ( ( 𝜑  ∧  𝜓 )  →  ( 𝑔 ( 〈 𝑦 ,  𝑦 〉  ·  𝑧 )  1  )  =  𝑔 )  ↔  ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  ( 𝑓  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑘  ∈  ( 𝑎 𝐻 𝑎 ) ) ) )  →  ( 𝑟 ( 〈 𝑦 ,  𝑦 〉  ·  𝑎 )  1  )  =  𝑟 ) ) ) | 
						
							| 114 | 113 | sbiedvw | ⊢ ( 𝑥  =  𝑦  →  ( [ 𝑎  /  𝑧 ] [ 𝑎  /  𝑤 ] [ 𝑟  /  𝑔 ] ( ( 𝜑  ∧  𝜓 )  →  ( 𝑔 ( 〈 𝑦 ,  𝑦 〉  ·  𝑧 )  1  )  =  𝑔 )  ↔  ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  ( 𝑓  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑘  ∈  ( 𝑎 𝐻 𝑎 ) ) ) )  →  ( 𝑟 ( 〈 𝑦 ,  𝑦 〉  ·  𝑎 )  1  )  =  𝑟 ) ) ) | 
						
							| 115 | 8 | sbt | ⊢ [ 𝑟  /  𝑔 ] ( ( 𝜑  ∧  𝜓 )  →  ( 𝑔 ( 〈 𝑦 ,  𝑦 〉  ·  𝑧 )  1  )  =  𝑔 ) | 
						
							| 116 | 115 | sbt | ⊢ [ 𝑎  /  𝑤 ] [ 𝑟  /  𝑔 ] ( ( 𝜑  ∧  𝜓 )  →  ( 𝑔 ( 〈 𝑦 ,  𝑦 〉  ·  𝑧 )  1  )  =  𝑔 ) | 
						
							| 117 | 116 | sbt | ⊢ [ 𝑎  /  𝑧 ] [ 𝑎  /  𝑤 ] [ 𝑟  /  𝑔 ] ( ( 𝜑  ∧  𝜓 )  →  ( 𝑔 ( 〈 𝑦 ,  𝑦 〉  ·  𝑧 )  1  )  =  𝑔 ) | 
						
							| 118 | 114 117 | chvarvv | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  ( 𝑓  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑘  ∈  ( 𝑎 𝐻 𝑎 ) ) ) )  →  ( 𝑟 ( 〈 𝑦 ,  𝑦 〉  ·  𝑎 )  1  )  =  𝑟 ) | 
						
							| 119 | 78 79 80 84 118 | syl13anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 ) ) )  ∧  ( 𝑓  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑎 𝐻 𝑎 ) ) )  →  ( 𝑟 ( 〈 𝑦 ,  𝑦 〉  ·  𝑎 )  1  )  =  𝑟 ) | 
						
							| 120 | 119 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 ) ) )  →  ( ( 𝑓  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑎 𝐻 𝑎 ) )  →  ( 𝑟 ( 〈 𝑦 ,  𝑦 〉  ·  𝑎 )  1  )  =  𝑟 ) ) | 
						
							| 121 | 120 | exlimdvv | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 ) ) )  →  ( ∃ 𝑓 ∃ 𝑘 ( 𝑓  ∈  ( 𝑦 𝐻 𝑦 )  ∧  𝑘  ∈  ( 𝑎 𝐻 𝑎 ) )  →  ( 𝑟 ( 〈 𝑦 ,  𝑦 〉  ·  𝑎 )  1  )  =  𝑟 ) ) | 
						
							| 122 | 77 121 | biimtrrid | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 ) ) )  →  ( ( ∃ 𝑓 𝑓  ∈  ( 𝑦 𝐻 𝑦 )  ∧  ∃ 𝑘 𝑘  ∈  ( 𝑎 𝐻 𝑎 ) )  →  ( 𝑟 ( 〈 𝑦 ,  𝑦 〉  ·  𝑎 )  1  )  =  𝑟 ) ) | 
						
							| 123 | 67 76 122 | mp2and | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑟  ∈  ( 𝑦 𝐻 𝑎 ) ) )  →  ( 𝑟 ( 〈 𝑦 ,  𝑦 〉  ·  𝑎 )  1  )  =  𝑟 ) | 
						
							| 124 |  | id | ⊢ ( 𝑦  =  𝑧  →  𝑦  =  𝑧 ) | 
						
							| 125 | 124 124 | oveq12d | ⊢ ( 𝑦  =  𝑧  →  ( 𝑦 𝐻 𝑦 )  =  ( 𝑧 𝐻 𝑧 ) ) | 
						
							| 126 | 125 | neeq1d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑦 𝐻 𝑦 )  ≠  ∅  ↔  ( 𝑧 𝐻 𝑧 )  ≠  ∅ ) ) | 
						
							| 127 | 71 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) ) )  →  ∀ 𝑦  ∈  𝐵 ( 𝑦 𝐻 𝑦 )  ≠  ∅ ) | 
						
							| 128 |  | simp23 | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) ) )  →  𝑧  ∈  𝐵 ) | 
						
							| 129 | 126 127 128 | rspcdva | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) ) )  →  ( 𝑧 𝐻 𝑧 )  ≠  ∅ ) | 
						
							| 130 |  | n0 | ⊢ ( ( 𝑧 𝐻 𝑧 )  ≠  ∅  ↔  ∃ 𝑘 𝑘  ∈  ( 𝑧 𝐻 𝑧 ) ) | 
						
							| 131 | 129 130 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) ) )  →  ∃ 𝑘 𝑘  ∈  ( 𝑧 𝐻 𝑧 ) ) | 
						
							| 132 |  | eleq1w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝐵  ↔  𝑦  ∈  𝐵 ) ) | 
						
							| 133 | 132 | 3anbi1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ↔  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) ) ) | 
						
							| 134 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥 𝐻 𝑎 )  =  ( 𝑦 𝐻 𝑎 ) ) | 
						
							| 135 | 134 | eleq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ↔  𝑟  ∈  ( 𝑦 𝐻 𝑎 ) ) ) | 
						
							| 136 | 135 | anbi1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) )  ↔  ( 𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) ) ) ) | 
						
							| 137 | 136 | anbi1d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑧 ) )  ↔  ( ( 𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑧 ) ) ) ) | 
						
							| 138 | 133 137 | anbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑧 ) ) )  ↔  ( ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑧 ) ) ) ) ) | 
						
							| 139 | 138 | anbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑧 ) ) ) )  ↔  ( 𝜑  ∧  ( ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑧 ) ) ) ) ) ) | 
						
							| 140 |  | opeq1 | ⊢ ( 𝑥  =  𝑦  →  〈 𝑥 ,  𝑎 〉  =  〈 𝑦 ,  𝑎 〉 ) | 
						
							| 141 | 140 | oveq1d | ⊢ ( 𝑥  =  𝑦  →  ( 〈 𝑥 ,  𝑎 〉  ·  𝑧 )  =  ( 〈 𝑦 ,  𝑎 〉  ·  𝑧 ) ) | 
						
							| 142 | 141 | oveqd | ⊢ ( 𝑥  =  𝑦  →  ( 𝑔 ( 〈 𝑥 ,  𝑎 〉  ·  𝑧 ) 𝑟 )  =  ( 𝑔 ( 〈 𝑦 ,  𝑎 〉  ·  𝑧 ) 𝑟 ) ) | 
						
							| 143 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥 𝐻 𝑧 )  =  ( 𝑦 𝐻 𝑧 ) ) | 
						
							| 144 | 142 143 | eleq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑔 ( 〈 𝑥 ,  𝑎 〉  ·  𝑧 ) 𝑟 )  ∈  ( 𝑥 𝐻 𝑧 )  ↔  ( 𝑔 ( 〈 𝑦 ,  𝑎 〉  ·  𝑧 ) 𝑟 )  ∈  ( 𝑦 𝐻 𝑧 ) ) ) | 
						
							| 145 | 139 144 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑧 ) ) ) )  →  ( 𝑔 ( 〈 𝑥 ,  𝑎 〉  ·  𝑧 ) 𝑟 )  ∈  ( 𝑥 𝐻 𝑧 ) )  ↔  ( ( 𝜑  ∧  ( ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑧 ) ) ) )  →  ( 𝑔 ( 〈 𝑦 ,  𝑎 〉  ·  𝑧 ) 𝑟 )  ∈  ( 𝑦 𝐻 𝑧 ) ) ) ) | 
						
							| 146 |  | df-3an | ⊢ ( ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) )  ↔  ( ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) ) ) | 
						
							| 147 | 5 146 | bitri | ⊢ ( 𝜓  ↔  ( ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) ) ) | 
						
							| 148 |  | simpll | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  𝑦  =  𝑎 ) | 
						
							| 149 | 148 | eleq1d | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  ( 𝑦  ∈  𝐵  ↔  𝑎  ∈  𝐵 ) ) | 
						
							| 150 | 149 | anbi2d | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ↔  ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵 ) ) ) | 
						
							| 151 |  | simplr | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  𝑤  =  𝑧 ) | 
						
							| 152 | 151 | eleq1d | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  ( 𝑤  ∈  𝐵  ↔  𝑧  ∈  𝐵 ) ) | 
						
							| 153 | 152 | anbi2d | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  ( ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ↔  ( 𝑧  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) ) ) | 
						
							| 154 |  | anidm | ⊢ ( ( 𝑧  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ↔  𝑧  ∈  𝐵 ) | 
						
							| 155 | 153 154 | bitrdi | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  ( ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ↔  𝑧  ∈  𝐵 ) ) | 
						
							| 156 | 150 155 | anbi12d | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  ( ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ↔  ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  ∧  𝑧  ∈  𝐵 ) ) ) | 
						
							| 157 |  | df-3an | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ↔  ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  ∧  𝑧  ∈  𝐵 ) ) | 
						
							| 158 | 156 157 | bitr4di | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  ( ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ↔  ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) ) ) | 
						
							| 159 |  | simpr | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  𝑓  =  𝑟 ) | 
						
							| 160 | 148 | oveq2d | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  ( 𝑥 𝐻 𝑦 )  =  ( 𝑥 𝐻 𝑎 ) ) | 
						
							| 161 | 159 160 | eleq12d | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ↔  𝑟  ∈  ( 𝑥 𝐻 𝑎 ) ) ) | 
						
							| 162 | 148 | oveq1d | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  ( 𝑦 𝐻 𝑧 )  =  ( 𝑎 𝐻 𝑧 ) ) | 
						
							| 163 | 162 | eleq2d | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  ( 𝑔  ∈  ( 𝑦 𝐻 𝑧 )  ↔  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) ) ) | 
						
							| 164 | 151 | oveq2d | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  ( 𝑧 𝐻 𝑤 )  =  ( 𝑧 𝐻 𝑧 ) ) | 
						
							| 165 | 164 | eleq2d | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  ( 𝑘  ∈  ( 𝑧 𝐻 𝑤 )  ↔  𝑘  ∈  ( 𝑧 𝐻 𝑧 ) ) ) | 
						
							| 166 | 161 163 165 | 3anbi123d | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  ( ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) )  ↔  ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑧 ) ) ) ) | 
						
							| 167 |  | df-3an | ⊢ ( ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑧 ) )  ↔  ( ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑧 ) ) ) | 
						
							| 168 | 166 167 | bitrdi | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  ( ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) )  ↔  ( ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑧 ) ) ) ) | 
						
							| 169 | 158 168 | anbi12d | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  ( ( ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) )  ↔  ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑧 ) ) ) ) ) | 
						
							| 170 | 147 169 | bitrid | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  ( 𝜓  ↔  ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑧 ) ) ) ) ) | 
						
							| 171 | 170 | anbi2d | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  ( ( 𝜑  ∧  𝜓 )  ↔  ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑧 ) ) ) ) ) ) | 
						
							| 172 | 148 | opeq2d | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  〈 𝑥 ,  𝑦 〉  =  〈 𝑥 ,  𝑎 〉 ) | 
						
							| 173 | 172 | oveq1d | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  ( 〈 𝑥 ,  𝑦 〉  ·  𝑧 )  =  ( 〈 𝑥 ,  𝑎 〉  ·  𝑧 ) ) | 
						
							| 174 |  | eqidd | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  𝑔  =  𝑔 ) | 
						
							| 175 | 173 174 159 | oveq123d | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑧 ) 𝑓 )  =  ( 𝑔 ( 〈 𝑥 ,  𝑎 〉  ·  𝑧 ) 𝑟 ) ) | 
						
							| 176 | 175 | eleq1d | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  ( ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑧 ) 𝑓 )  ∈  ( 𝑥 𝐻 𝑧 )  ↔  ( 𝑔 ( 〈 𝑥 ,  𝑎 〉  ·  𝑧 ) 𝑟 )  ∈  ( 𝑥 𝐻 𝑧 ) ) ) | 
						
							| 177 | 171 176 | imbi12d | ⊢ ( ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  ∧  𝑓  =  𝑟 )  →  ( ( ( 𝜑  ∧  𝜓 )  →  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑧 ) 𝑓 )  ∈  ( 𝑥 𝐻 𝑧 ) )  ↔  ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑧 ) ) ) )  →  ( 𝑔 ( 〈 𝑥 ,  𝑎 〉  ·  𝑧 ) 𝑟 )  ∈  ( 𝑥 𝐻 𝑧 ) ) ) ) | 
						
							| 178 | 177 | sbiedvw | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑤  =  𝑧 )  →  ( [ 𝑟  /  𝑓 ] ( ( 𝜑  ∧  𝜓 )  →  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑧 ) 𝑓 )  ∈  ( 𝑥 𝐻 𝑧 ) )  ↔  ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑧 ) ) ) )  →  ( 𝑔 ( 〈 𝑥 ,  𝑎 〉  ·  𝑧 ) 𝑟 )  ∈  ( 𝑥 𝐻 𝑧 ) ) ) ) | 
						
							| 179 | 178 | sbiedvw | ⊢ ( 𝑦  =  𝑎  →  ( [ 𝑧  /  𝑤 ] [ 𝑟  /  𝑓 ] ( ( 𝜑  ∧  𝜓 )  →  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑧 ) 𝑓 )  ∈  ( 𝑥 𝐻 𝑧 ) )  ↔  ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑧 ) ) ) )  →  ( 𝑔 ( 〈 𝑥 ,  𝑎 〉  ·  𝑧 ) 𝑟 )  ∈  ( 𝑥 𝐻 𝑧 ) ) ) ) | 
						
							| 180 | 9 | sbt | ⊢ [ 𝑟  /  𝑓 ] ( ( 𝜑  ∧  𝜓 )  →  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑧 ) 𝑓 )  ∈  ( 𝑥 𝐻 𝑧 ) ) | 
						
							| 181 | 180 | sbt | ⊢ [ 𝑧  /  𝑤 ] [ 𝑟  /  𝑓 ] ( ( 𝜑  ∧  𝜓 )  →  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑧 ) 𝑓 )  ∈  ( 𝑥 𝐻 𝑧 ) ) | 
						
							| 182 | 179 181 | chvarvv | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑧 ) ) ) )  →  ( 𝑔 ( 〈 𝑥 ,  𝑎 〉  ·  𝑧 ) 𝑟 )  ∈  ( 𝑥 𝐻 𝑧 ) ) | 
						
							| 183 | 145 182 | chvarvv | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑧 ) ) ) )  →  ( 𝑔 ( 〈 𝑦 ,  𝑎 〉  ·  𝑧 ) 𝑟 )  ∈  ( 𝑦 𝐻 𝑧 ) ) | 
						
							| 184 | 183 | exp45 | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) )  →  ( 𝑘  ∈  ( 𝑧 𝐻 𝑧 )  →  ( 𝑔 ( 〈 𝑦 ,  𝑎 〉  ·  𝑧 ) 𝑟 )  ∈  ( 𝑦 𝐻 𝑧 ) ) ) ) ) | 
						
							| 185 | 184 | 3imp | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) ) )  →  ( 𝑘  ∈  ( 𝑧 𝐻 𝑧 )  →  ( 𝑔 ( 〈 𝑦 ,  𝑎 〉  ·  𝑧 ) 𝑟 )  ∈  ( 𝑦 𝐻 𝑧 ) ) ) | 
						
							| 186 | 185 | exlimdv | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) ) )  →  ( ∃ 𝑘 𝑘  ∈  ( 𝑧 𝐻 𝑧 )  →  ( 𝑔 ( 〈 𝑦 ,  𝑎 〉  ·  𝑧 ) 𝑟 )  ∈  ( 𝑦 𝐻 𝑧 ) ) ) | 
						
							| 187 | 131 186 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) ) )  →  ( 𝑔 ( 〈 𝑦 ,  𝑎 〉  ·  𝑧 ) 𝑟 )  ∈  ( 𝑦 𝐻 𝑧 ) ) | 
						
							| 188 | 132 | anbi1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  ↔  ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵 ) ) ) | 
						
							| 189 | 188 | anbi1d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ↔  ( ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) ) ) ) | 
						
							| 190 | 135 | 3anbi1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) )  ↔  ( 𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) ) ) | 
						
							| 191 | 189 190 | 3anbi23d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) )  ↔  ( 𝜑  ∧  ( ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) ) ) ) | 
						
							| 192 | 140 | oveq1d | ⊢ ( 𝑥  =  𝑦  →  ( 〈 𝑥 ,  𝑎 〉  ·  𝑤 )  =  ( 〈 𝑦 ,  𝑎 〉  ·  𝑤 ) ) | 
						
							| 193 | 192 | oveqd | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑘 ( 〈 𝑎 ,  𝑧 〉  ·  𝑤 ) 𝑔 ) ( 〈 𝑥 ,  𝑎 〉  ·  𝑤 ) 𝑟 )  =  ( ( 𝑘 ( 〈 𝑎 ,  𝑧 〉  ·  𝑤 ) 𝑔 ) ( 〈 𝑦 ,  𝑎 〉  ·  𝑤 ) 𝑟 ) ) | 
						
							| 194 |  | opeq1 | ⊢ ( 𝑥  =  𝑦  →  〈 𝑥 ,  𝑧 〉  =  〈 𝑦 ,  𝑧 〉 ) | 
						
							| 195 | 194 | oveq1d | ⊢ ( 𝑥  =  𝑦  →  ( 〈 𝑥 ,  𝑧 〉  ·  𝑤 )  =  ( 〈 𝑦 ,  𝑧 〉  ·  𝑤 ) ) | 
						
							| 196 |  | eqidd | ⊢ ( 𝑥  =  𝑦  →  𝑘  =  𝑘 ) | 
						
							| 197 | 195 196 142 | oveq123d | ⊢ ( 𝑥  =  𝑦  →  ( 𝑘 ( 〈 𝑥 ,  𝑧 〉  ·  𝑤 ) ( 𝑔 ( 〈 𝑥 ,  𝑎 〉  ·  𝑧 ) 𝑟 ) )  =  ( 𝑘 ( 〈 𝑦 ,  𝑧 〉  ·  𝑤 ) ( 𝑔 ( 〈 𝑦 ,  𝑎 〉  ·  𝑧 ) 𝑟 ) ) ) | 
						
							| 198 | 193 197 | eqeq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝑘 ( 〈 𝑎 ,  𝑧 〉  ·  𝑤 ) 𝑔 ) ( 〈 𝑥 ,  𝑎 〉  ·  𝑤 ) 𝑟 )  =  ( 𝑘 ( 〈 𝑥 ,  𝑧 〉  ·  𝑤 ) ( 𝑔 ( 〈 𝑥 ,  𝑎 〉  ·  𝑧 ) 𝑟 ) )  ↔  ( ( 𝑘 ( 〈 𝑎 ,  𝑧 〉  ·  𝑤 ) 𝑔 ) ( 〈 𝑦 ,  𝑎 〉  ·  𝑤 ) 𝑟 )  =  ( 𝑘 ( 〈 𝑦 ,  𝑧 〉  ·  𝑤 ) ( 𝑔 ( 〈 𝑦 ,  𝑎 〉  ·  𝑧 ) 𝑟 ) ) ) ) | 
						
							| 199 | 191 198 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) )  →  ( ( 𝑘 ( 〈 𝑎 ,  𝑧 〉  ·  𝑤 ) 𝑔 ) ( 〈 𝑥 ,  𝑎 〉  ·  𝑤 ) 𝑟 )  =  ( 𝑘 ( 〈 𝑥 ,  𝑧 〉  ·  𝑤 ) ( 𝑔 ( 〈 𝑥 ,  𝑎 〉  ·  𝑧 ) 𝑟 ) ) )  ↔  ( ( 𝜑  ∧  ( ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) )  →  ( ( 𝑘 ( 〈 𝑎 ,  𝑧 〉  ·  𝑤 ) 𝑔 ) ( 〈 𝑦 ,  𝑎 〉  ·  𝑤 ) 𝑟 )  =  ( 𝑘 ( 〈 𝑦 ,  𝑧 〉  ·  𝑤 ) ( 𝑔 ( 〈 𝑦 ,  𝑎 〉  ·  𝑧 ) 𝑟 ) ) ) ) ) | 
						
							| 200 |  | simpl | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  𝑦  =  𝑎 ) | 
						
							| 201 | 200 | eleq1d | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  ( 𝑦  ∈  𝐵  ↔  𝑎  ∈  𝐵 ) ) | 
						
							| 202 | 201 | anbi2d | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ↔  ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵 ) ) ) | 
						
							| 203 |  | simpr | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  𝑓  =  𝑟 ) | 
						
							| 204 | 200 | oveq2d | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  ( 𝑥 𝐻 𝑦 )  =  ( 𝑥 𝐻 𝑎 ) ) | 
						
							| 205 | 203 204 | eleq12d | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ↔  𝑟  ∈  ( 𝑥 𝐻 𝑎 ) ) ) | 
						
							| 206 | 200 | oveq1d | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  ( 𝑦 𝐻 𝑧 )  =  ( 𝑎 𝐻 𝑧 ) ) | 
						
							| 207 | 206 | eleq2d | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  ( 𝑔  ∈  ( 𝑦 𝐻 𝑧 )  ↔  𝑔  ∈  ( 𝑎 𝐻 𝑧 ) ) ) | 
						
							| 208 | 205 207 | 3anbi12d | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  ( ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) )  ↔  ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) ) ) | 
						
							| 209 | 202 208 | 3anbi13d | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  ( ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) )  ↔  ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) ) ) ) | 
						
							| 210 | 5 209 | bitrid | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  ( 𝜓  ↔  ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) ) ) ) | 
						
							| 211 |  | df-3an | ⊢ ( ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) )  ↔  ( ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) ) ) | 
						
							| 212 | 210 211 | bitrdi | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  ( 𝜓  ↔  ( ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) ) ) ) | 
						
							| 213 | 212 | anbi2d | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  ( ( 𝜑  ∧  𝜓 )  ↔  ( 𝜑  ∧  ( ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) ) ) ) ) | 
						
							| 214 |  | 3anass | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) )  ↔  ( 𝜑  ∧  ( ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) ) ) ) | 
						
							| 215 | 213 214 | bitr4di | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  ( ( 𝜑  ∧  𝜓 )  ↔  ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) ) ) ) | 
						
							| 216 | 200 | opeq2d | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  〈 𝑥 ,  𝑦 〉  =  〈 𝑥 ,  𝑎 〉 ) | 
						
							| 217 | 216 | oveq1d | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  ( 〈 𝑥 ,  𝑦 〉  ·  𝑤 )  =  ( 〈 𝑥 ,  𝑎 〉  ·  𝑤 ) ) | 
						
							| 218 | 200 | opeq1d | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  〈 𝑦 ,  𝑧 〉  =  〈 𝑎 ,  𝑧 〉 ) | 
						
							| 219 | 218 | oveq1d | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  ( 〈 𝑦 ,  𝑧 〉  ·  𝑤 )  =  ( 〈 𝑎 ,  𝑧 〉  ·  𝑤 ) ) | 
						
							| 220 | 219 | oveqd | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  ( 𝑘 ( 〈 𝑦 ,  𝑧 〉  ·  𝑤 ) 𝑔 )  =  ( 𝑘 ( 〈 𝑎 ,  𝑧 〉  ·  𝑤 ) 𝑔 ) ) | 
						
							| 221 | 217 220 203 | oveq123d | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  ( ( 𝑘 ( 〈 𝑦 ,  𝑧 〉  ·  𝑤 ) 𝑔 ) ( 〈 𝑥 ,  𝑦 〉  ·  𝑤 ) 𝑓 )  =  ( ( 𝑘 ( 〈 𝑎 ,  𝑧 〉  ·  𝑤 ) 𝑔 ) ( 〈 𝑥 ,  𝑎 〉  ·  𝑤 ) 𝑟 ) ) | 
						
							| 222 | 216 | oveq1d | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  ( 〈 𝑥 ,  𝑦 〉  ·  𝑧 )  =  ( 〈 𝑥 ,  𝑎 〉  ·  𝑧 ) ) | 
						
							| 223 |  | eqidd | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  𝑔  =  𝑔 ) | 
						
							| 224 | 222 223 203 | oveq123d | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑧 ) 𝑓 )  =  ( 𝑔 ( 〈 𝑥 ,  𝑎 〉  ·  𝑧 ) 𝑟 ) ) | 
						
							| 225 | 224 | oveq2d | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  ( 𝑘 ( 〈 𝑥 ,  𝑧 〉  ·  𝑤 ) ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑧 ) 𝑓 ) )  =  ( 𝑘 ( 〈 𝑥 ,  𝑧 〉  ·  𝑤 ) ( 𝑔 ( 〈 𝑥 ,  𝑎 〉  ·  𝑧 ) 𝑟 ) ) ) | 
						
							| 226 | 221 225 | eqeq12d | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  ( ( ( 𝑘 ( 〈 𝑦 ,  𝑧 〉  ·  𝑤 ) 𝑔 ) ( 〈 𝑥 ,  𝑦 〉  ·  𝑤 ) 𝑓 )  =  ( 𝑘 ( 〈 𝑥 ,  𝑧 〉  ·  𝑤 ) ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑧 ) 𝑓 ) )  ↔  ( ( 𝑘 ( 〈 𝑎 ,  𝑧 〉  ·  𝑤 ) 𝑔 ) ( 〈 𝑥 ,  𝑎 〉  ·  𝑤 ) 𝑟 )  =  ( 𝑘 ( 〈 𝑥 ,  𝑧 〉  ·  𝑤 ) ( 𝑔 ( 〈 𝑥 ,  𝑎 〉  ·  𝑧 ) 𝑟 ) ) ) ) | 
						
							| 227 | 215 226 | imbi12d | ⊢ ( ( 𝑦  =  𝑎  ∧  𝑓  =  𝑟 )  →  ( ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝑘 ( 〈 𝑦 ,  𝑧 〉  ·  𝑤 ) 𝑔 ) ( 〈 𝑥 ,  𝑦 〉  ·  𝑤 ) 𝑓 )  =  ( 𝑘 ( 〈 𝑥 ,  𝑧 〉  ·  𝑤 ) ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑧 ) 𝑓 ) ) )  ↔  ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) )  →  ( ( 𝑘 ( 〈 𝑎 ,  𝑧 〉  ·  𝑤 ) 𝑔 ) ( 〈 𝑥 ,  𝑎 〉  ·  𝑤 ) 𝑟 )  =  ( 𝑘 ( 〈 𝑥 ,  𝑧 〉  ·  𝑤 ) ( 𝑔 ( 〈 𝑥 ,  𝑎 〉  ·  𝑧 ) 𝑟 ) ) ) ) ) | 
						
							| 228 | 227 | sbiedvw | ⊢ ( 𝑦  =  𝑎  →  ( [ 𝑟  /  𝑓 ] ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝑘 ( 〈 𝑦 ,  𝑧 〉  ·  𝑤 ) 𝑔 ) ( 〈 𝑥 ,  𝑦 〉  ·  𝑤 ) 𝑓 )  =  ( 𝑘 ( 〈 𝑥 ,  𝑧 〉  ·  𝑤 ) ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑧 ) 𝑓 ) ) )  ↔  ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) )  →  ( ( 𝑘 ( 〈 𝑎 ,  𝑧 〉  ·  𝑤 ) 𝑔 ) ( 〈 𝑥 ,  𝑎 〉  ·  𝑤 ) 𝑟 )  =  ( 𝑘 ( 〈 𝑥 ,  𝑧 〉  ·  𝑤 ) ( 𝑔 ( 〈 𝑥 ,  𝑎 〉  ·  𝑧 ) 𝑟 ) ) ) ) ) | 
						
							| 229 | 10 | sbt | ⊢ [ 𝑟  /  𝑓 ] ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝑘 ( 〈 𝑦 ,  𝑧 〉  ·  𝑤 ) 𝑔 ) ( 〈 𝑥 ,  𝑦 〉  ·  𝑤 ) 𝑓 )  =  ( 𝑘 ( 〈 𝑥 ,  𝑧 〉  ·  𝑤 ) ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑧 ) 𝑓 ) ) ) | 
						
							| 230 | 228 229 | chvarvv | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑟  ∈  ( 𝑥 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) )  →  ( ( 𝑘 ( 〈 𝑎 ,  𝑧 〉  ·  𝑤 ) 𝑔 ) ( 〈 𝑥 ,  𝑎 〉  ·  𝑤 ) 𝑟 )  =  ( 𝑘 ( 〈 𝑥 ,  𝑧 〉  ·  𝑤 ) ( 𝑔 ( 〈 𝑥 ,  𝑎 〉  ·  𝑧 ) 𝑟 ) ) ) | 
						
							| 231 | 199 230 | chvarvv | ⊢ ( ( 𝜑  ∧  ( ( 𝑦  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑟  ∈  ( 𝑦 𝐻 𝑎 )  ∧  𝑔  ∈  ( 𝑎 𝐻 𝑧 )  ∧  𝑘  ∈  ( 𝑧 𝐻 𝑤 ) ) )  →  ( ( 𝑘 ( 〈 𝑎 ,  𝑧 〉  ·  𝑤 ) 𝑔 ) ( 〈 𝑦 ,  𝑎 〉  ·  𝑤 ) 𝑟 )  =  ( 𝑘 ( 〈 𝑦 ,  𝑧 〉  ·  𝑤 ) ( 𝑔 ( 〈 𝑦 ,  𝑎 〉  ·  𝑧 ) 𝑟 ) ) ) | 
						
							| 232 | 1 2 3 4 6 64 123 187 231 | iscatd | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 233 | 1 2 3 232 6 64 123 | catidd | ⊢ ( 𝜑  →  ( Id ‘ 𝐶 )  =  ( 𝑦  ∈  𝐵  ↦   1  ) ) | 
						
							| 234 | 232 233 | jca | ⊢ ( 𝜑  →  ( 𝐶  ∈  Cat  ∧  ( Id ‘ 𝐶 )  =  ( 𝑦  ∈  𝐵  ↦   1  ) ) ) |