Step |
Hyp |
Ref |
Expression |
1 |
|
iscatd2.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
2 |
|
iscatd2.h |
⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) |
3 |
|
iscatd2.o |
⊢ ( 𝜑 → · = ( comp ‘ 𝐶 ) ) |
4 |
|
iscatd2.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
5 |
|
iscatd2.ps |
⊢ ( 𝜓 ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) |
6 |
|
iscatd2.1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 1 ∈ ( 𝑦 𝐻 𝑦 ) ) |
7 |
|
iscatd2.2 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) |
8 |
|
iscatd2.3 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) |
9 |
|
iscatd2.4 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
10 |
|
iscatd2.5 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) |
11 |
6
|
ne0d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 𝐻 𝑦 ) ≠ ∅ ) |
12 |
11
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) → ( 𝑦 𝐻 𝑦 ) ≠ ∅ ) |
13 |
|
n0 |
⊢ ( ( 𝑦 𝐻 𝑦 ) ≠ ∅ ↔ ∃ 𝑔 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ) |
14 |
12 13
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) → ∃ 𝑔 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ) |
15 |
|
n0 |
⊢ ( ( 𝑦 𝐻 𝑦 ) ≠ ∅ ↔ ∃ 𝑘 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) |
16 |
12 15
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) → ∃ 𝑘 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) |
17 |
|
exdistrv |
⊢ ( ∃ 𝑔 ∃ 𝑘 ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ↔ ( ∃ 𝑔 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ ∃ 𝑘 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) |
18 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → 𝜑 ) |
19 |
|
simplr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → 𝑎 ∈ 𝐵 ) |
20 |
|
simplr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → 𝑦 ∈ 𝐵 ) |
21 |
19 20
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
22 |
|
simplr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) |
23 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ) |
24 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) |
25 |
22 23 24
|
3jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) |
26 |
|
simplll |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → 𝑥 = 𝑎 ) |
27 |
26
|
eleq1d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑥 ∈ 𝐵 ↔ 𝑎 ∈ 𝐵 ) ) |
28 |
27
|
anbi1d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) |
29 |
|
simpllr |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → 𝑧 = 𝑦 ) |
30 |
29
|
eleq1d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑧 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
31 |
|
simplr |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → 𝑤 = 𝑦 ) |
32 |
31
|
eleq1d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑤 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
33 |
30 32
|
anbi12d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) |
34 |
|
anidm |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ 𝑦 ∈ 𝐵 ) |
35 |
33 34
|
bitrdi |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ 𝑦 ∈ 𝐵 ) ) |
36 |
|
simpr |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → 𝑓 = 𝑟 ) |
37 |
26
|
oveq1d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑎 𝐻 𝑦 ) ) |
38 |
36 37
|
eleq12d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) |
39 |
29
|
oveq2d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑦 𝐻 𝑦 ) ) |
40 |
39
|
eleq2d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ↔ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ) ) |
41 |
29 31
|
oveq12d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑧 𝐻 𝑤 ) = ( 𝑦 𝐻 𝑦 ) ) |
42 |
41
|
eleq2d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ↔ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) |
43 |
38 40 42
|
3anbi123d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ↔ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) |
44 |
28 35 43
|
3anbi123d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) ) |
45 |
5 44
|
syl5bb |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝜓 ↔ ( ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) ) |
46 |
45
|
anbi2d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) ) ) |
47 |
26
|
opeq1d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → 〈 𝑥 , 𝑦 〉 = 〈 𝑎 , 𝑦 〉 ) |
48 |
47
|
oveq1d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) = ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) ) |
49 |
|
eqidd |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → 1 = 1 ) |
50 |
48 49 36
|
oveq123d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) ) |
51 |
50 36
|
eqeq12d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ↔ ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) ) |
52 |
46 51
|
imbi12d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( ( ( 𝜑 ∧ 𝜓 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) ↔ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) ) ) |
53 |
52
|
sbiedvw |
⊢ ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) → ( [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) ↔ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) ) ) |
54 |
53
|
sbiedvw |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) → ( [ 𝑦 / 𝑤 ] [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) ↔ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) ) ) |
55 |
54
|
sbiedvw |
⊢ ( 𝑥 = 𝑎 → ( [ 𝑦 / 𝑧 ] [ 𝑦 / 𝑤 ] [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) ↔ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) ) ) |
56 |
7
|
sbt |
⊢ [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) |
57 |
56
|
sbt |
⊢ [ 𝑦 / 𝑤 ] [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) |
58 |
57
|
sbt |
⊢ [ 𝑦 / 𝑧 ] [ 𝑦 / 𝑤 ] [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) |
59 |
55 58
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) |
60 |
18 21 20 25 59
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) |
61 |
60
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) → ( ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) ) |
62 |
61
|
exlimdvv |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) → ( ∃ 𝑔 ∃ 𝑘 ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) ) |
63 |
17 62
|
syl5bir |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) → ( ( ∃ 𝑔 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ ∃ 𝑘 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) ) |
64 |
14 16 63
|
mp2and |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) |
65 |
11
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ( 𝑦 𝐻 𝑦 ) ≠ ∅ ) |
66 |
|
n0 |
⊢ ( ( 𝑦 𝐻 𝑦 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ) |
67 |
65 66
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ∃ 𝑓 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ) |
68 |
|
id |
⊢ ( 𝑦 = 𝑎 → 𝑦 = 𝑎 ) |
69 |
68 68
|
oveq12d |
⊢ ( 𝑦 = 𝑎 → ( 𝑦 𝐻 𝑦 ) = ( 𝑎 𝐻 𝑎 ) ) |
70 |
69
|
neeq1d |
⊢ ( 𝑦 = 𝑎 → ( ( 𝑦 𝐻 𝑦 ) ≠ ∅ ↔ ( 𝑎 𝐻 𝑎 ) ≠ ∅ ) ) |
71 |
11
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝐻 𝑦 ) ≠ ∅ ) |
72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝐻 𝑦 ) ≠ ∅ ) |
73 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → 𝑎 ∈ 𝐵 ) |
74 |
70 72 73
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ( 𝑎 𝐻 𝑎 ) ≠ ∅ ) |
75 |
|
n0 |
⊢ ( ( 𝑎 𝐻 𝑎 ) ≠ ∅ ↔ ∃ 𝑘 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) |
76 |
74 75
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ∃ 𝑘 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) |
77 |
|
exdistrv |
⊢ ( ∃ 𝑓 ∃ 𝑘 ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ↔ ( ∃ 𝑓 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ ∃ 𝑘 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) |
78 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) → 𝜑 ) |
79 |
|
simplr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) → 𝑦 ∈ 𝐵 ) |
80 |
|
simplr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) → 𝑎 ∈ 𝐵 ) |
81 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) → 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ) |
82 |
|
simplr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) → 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) |
83 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) → 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) |
84 |
81 82 83
|
3jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) → ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) |
85 |
|
simplll |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → 𝑥 = 𝑦 ) |
86 |
85
|
eleq1d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
87 |
86
|
anbi1d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) |
88 |
87 34
|
bitrdi |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ 𝑦 ∈ 𝐵 ) ) |
89 |
|
simpllr |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → 𝑧 = 𝑎 ) |
90 |
89
|
eleq1d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑧 ∈ 𝐵 ↔ 𝑎 ∈ 𝐵 ) ) |
91 |
|
simplr |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → 𝑤 = 𝑎 ) |
92 |
91
|
eleq1d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑤 ∈ 𝐵 ↔ 𝑎 ∈ 𝐵 ) ) |
93 |
90 92
|
anbi12d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ ( 𝑎 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ) ) |
94 |
|
anidm |
⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ↔ 𝑎 ∈ 𝐵 ) |
95 |
93 94
|
bitrdi |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ 𝑎 ∈ 𝐵 ) ) |
96 |
85
|
oveq1d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑦 ) ) |
97 |
96
|
eleq2d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ) ) |
98 |
|
simpr |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → 𝑔 = 𝑟 ) |
99 |
89
|
oveq2d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑦 𝐻 𝑎 ) ) |
100 |
98 99
|
eleq12d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ↔ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) |
101 |
89 91
|
oveq12d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑧 𝐻 𝑤 ) = ( 𝑎 𝐻 𝑎 ) ) |
102 |
101
|
eleq2d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ↔ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) |
103 |
97 100 102
|
3anbi123d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ↔ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) |
104 |
88 95 103
|
3anbi123d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) ) |
105 |
5 104
|
syl5bb |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝜓 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) ) |
106 |
105
|
anbi2d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) ) ) |
107 |
89
|
oveq2d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) = ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) ) |
108 |
|
eqidd |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → 1 = 1 ) |
109 |
107 98 108
|
oveq123d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) ) |
110 |
109 98
|
eqeq12d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ↔ ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) ) |
111 |
106 110
|
imbi12d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) ↔ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) ) ) |
112 |
111
|
sbiedvw |
⊢ ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) → ( [ 𝑟 / 𝑔 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) ↔ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) ) ) |
113 |
112
|
sbiedvw |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) → ( [ 𝑎 / 𝑤 ] [ 𝑟 / 𝑔 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) ↔ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) ) ) |
114 |
113
|
sbiedvw |
⊢ ( 𝑥 = 𝑦 → ( [ 𝑎 / 𝑧 ] [ 𝑎 / 𝑤 ] [ 𝑟 / 𝑔 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) ↔ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) ) ) |
115 |
8
|
sbt |
⊢ [ 𝑟 / 𝑔 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) |
116 |
115
|
sbt |
⊢ [ 𝑎 / 𝑤 ] [ 𝑟 / 𝑔 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) |
117 |
116
|
sbt |
⊢ [ 𝑎 / 𝑧 ] [ 𝑎 / 𝑤 ] [ 𝑟 / 𝑔 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) |
118 |
114 117
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) |
119 |
78 79 80 84 118
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) |
120 |
119
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ( ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) ) |
121 |
120
|
exlimdvv |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ( ∃ 𝑓 ∃ 𝑘 ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) ) |
122 |
77 121
|
syl5bir |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ( ( ∃ 𝑓 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ ∃ 𝑘 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) ) |
123 |
67 76 122
|
mp2and |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) |
124 |
|
id |
⊢ ( 𝑦 = 𝑧 → 𝑦 = 𝑧 ) |
125 |
124 124
|
oveq12d |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 𝐻 𝑦 ) = ( 𝑧 𝐻 𝑧 ) ) |
126 |
125
|
neeq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 𝐻 𝑦 ) ≠ ∅ ↔ ( 𝑧 𝐻 𝑧 ) ≠ ∅ ) ) |
127 |
71
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) → ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝐻 𝑦 ) ≠ ∅ ) |
128 |
|
simp23 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) → 𝑧 ∈ 𝐵 ) |
129 |
126 127 128
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) → ( 𝑧 𝐻 𝑧 ) ≠ ∅ ) |
130 |
|
n0 |
⊢ ( ( 𝑧 𝐻 𝑧 ) ≠ ∅ ↔ ∃ 𝑘 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) |
131 |
129 130
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) → ∃ 𝑘 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) |
132 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
133 |
132
|
3anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ) |
134 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 𝐻 𝑎 ) = ( 𝑦 𝐻 𝑎 ) ) |
135 |
134
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ↔ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) |
136 |
135
|
anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ↔ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) ) |
137 |
136
|
anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ↔ ( ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) |
138 |
133 137
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) ) |
139 |
138
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) ↔ ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) ) ) |
140 |
|
opeq1 |
⊢ ( 𝑥 = 𝑦 → 〈 𝑥 , 𝑎 〉 = 〈 𝑦 , 𝑎 〉 ) |
141 |
140
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) = ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) ) |
142 |
141
|
oveqd |
⊢ ( 𝑥 = 𝑦 → ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) = ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) |
143 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 𝐻 𝑧 ) = ( 𝑦 𝐻 𝑧 ) ) |
144 |
142 143
|
eleq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑥 𝐻 𝑧 ) ↔ ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑦 𝐻 𝑧 ) ) ) |
145 |
139 144
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑦 𝐻 𝑧 ) ) ) ) |
146 |
|
df-3an |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) |
147 |
5 146
|
bitri |
⊢ ( 𝜓 ↔ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) |
148 |
|
simpll |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → 𝑦 = 𝑎 ) |
149 |
148
|
eleq1d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑦 ∈ 𝐵 ↔ 𝑎 ∈ 𝐵 ) ) |
150 |
149
|
anbi2d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ) ) |
151 |
|
simplr |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → 𝑤 = 𝑧 ) |
152 |
151
|
eleq1d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑤 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵 ) ) |
153 |
152
|
anbi2d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ) |
154 |
|
anidm |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ↔ 𝑧 ∈ 𝐵 ) |
155 |
153 154
|
bitrdi |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ 𝑧 ∈ 𝐵 ) ) |
156 |
150 155
|
anbi12d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ) ) |
157 |
|
df-3an |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ) |
158 |
156 157
|
bitr4di |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ) |
159 |
|
simpr |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → 𝑓 = 𝑟 ) |
160 |
148
|
oveq2d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐻 𝑎 ) ) |
161 |
159 160
|
eleq12d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ) ) |
162 |
148
|
oveq1d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑎 𝐻 𝑧 ) ) |
163 |
162
|
eleq2d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ↔ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) |
164 |
151
|
oveq2d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑧 𝐻 𝑤 ) = ( 𝑧 𝐻 𝑧 ) ) |
165 |
164
|
eleq2d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ↔ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) |
166 |
161 163 165
|
3anbi123d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ↔ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) |
167 |
|
df-3an |
⊢ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ↔ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) |
168 |
166 167
|
bitrdi |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ↔ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) |
169 |
158 168
|
anbi12d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) ) |
170 |
147 169
|
syl5bb |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝜓 ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) ) |
171 |
170
|
anbi2d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) ) ) |
172 |
148
|
opeq2d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → 〈 𝑥 , 𝑦 〉 = 〈 𝑥 , 𝑎 〉 ) |
173 |
172
|
oveq1d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) = ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) ) |
174 |
|
eqidd |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → 𝑔 = 𝑔 ) |
175 |
173 174 159
|
oveq123d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) |
176 |
175
|
eleq1d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ↔ ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) |
177 |
171 176
|
imbi12d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) ) |
178 |
177
|
sbiedvw |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) → ( [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) ) |
179 |
178
|
sbiedvw |
⊢ ( 𝑦 = 𝑎 → ( [ 𝑧 / 𝑤 ] [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) ) |
180 |
9
|
sbt |
⊢ [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
181 |
180
|
sbt |
⊢ [ 𝑧 / 𝑤 ] [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
182 |
179 181
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
183 |
145 182
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑦 𝐻 𝑧 ) ) |
184 |
183
|
exp45 |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) → ( 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) → ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑦 𝐻 𝑧 ) ) ) ) ) |
185 |
184
|
3imp |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) → ( 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) → ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑦 𝐻 𝑧 ) ) ) |
186 |
185
|
exlimdv |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) → ( ∃ 𝑘 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) → ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑦 𝐻 𝑧 ) ) ) |
187 |
131 186
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑦 𝐻 𝑧 ) ) |
188 |
132
|
anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ) ) |
189 |
188
|
anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ) |
190 |
135
|
3anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ↔ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) |
191 |
189 190
|
3anbi23d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) ) |
192 |
140
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) = ( 〈 𝑦 , 𝑎 〉 · 𝑤 ) ) |
193 |
192
|
oveqd |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑦 , 𝑎 〉 · 𝑤 ) 𝑟 ) ) |
194 |
|
opeq1 |
⊢ ( 𝑥 = 𝑦 → 〈 𝑥 , 𝑧 〉 = 〈 𝑦 , 𝑧 〉 ) |
195 |
194
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) = ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) ) |
196 |
|
eqidd |
⊢ ( 𝑥 = 𝑦 → 𝑘 = 𝑘 ) |
197 |
195 196 142
|
oveq123d |
⊢ ( 𝑥 = 𝑦 → ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) = ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) |
198 |
193 197
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ↔ ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑦 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) ) |
199 |
191 198
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) → ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) → ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑦 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) ) ) |
200 |
|
simpl |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → 𝑦 = 𝑎 ) |
201 |
200
|
eleq1d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝑦 ∈ 𝐵 ↔ 𝑎 ∈ 𝐵 ) ) |
202 |
201
|
anbi2d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ) ) |
203 |
|
simpr |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → 𝑓 = 𝑟 ) |
204 |
200
|
oveq2d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐻 𝑎 ) ) |
205 |
203 204
|
eleq12d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ) ) |
206 |
200
|
oveq1d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑎 𝐻 𝑧 ) ) |
207 |
206
|
eleq2d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ↔ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) |
208 |
205 207
|
3anbi12d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ↔ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) |
209 |
202 208
|
3anbi13d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) ) |
210 |
5 209
|
syl5bb |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝜓 ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) ) |
211 |
|
df-3an |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) |
212 |
210 211
|
bitrdi |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝜓 ↔ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) ) |
213 |
212
|
anbi2d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) ) ) |
214 |
|
3anass |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( 𝜑 ∧ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) ) |
215 |
213 214
|
bitr4di |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) ) |
216 |
200
|
opeq2d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → 〈 𝑥 , 𝑦 〉 = 〈 𝑥 , 𝑎 〉 ) |
217 |
216
|
oveq1d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) = ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) ) |
218 |
200
|
opeq1d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → 〈 𝑦 , 𝑧 〉 = 〈 𝑎 , 𝑧 〉 ) |
219 |
218
|
oveq1d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) = ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) ) |
220 |
219
|
oveqd |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) = ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ) |
221 |
217 220 203
|
oveq123d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) 𝑟 ) ) |
222 |
216
|
oveq1d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) = ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) ) |
223 |
|
eqidd |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → 𝑔 = 𝑔 ) |
224 |
222 223 203
|
oveq123d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) |
225 |
224
|
oveq2d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) |
226 |
221 225
|
eqeq12d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ↔ ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) ) |
227 |
215 226
|
imbi12d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) → ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) ) ) |
228 |
227
|
sbiedvw |
⊢ ( 𝑦 = 𝑎 → ( [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) → ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) ) ) |
229 |
10
|
sbt |
⊢ [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) |
230 |
228 229
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) → ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) |
231 |
199 230
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) → ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑦 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) |
232 |
1 2 3 4 6 64 123 187 231
|
iscatd |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
233 |
1 2 3 232 6 64 123
|
catidd |
⊢ ( 𝜑 → ( Id ‘ 𝐶 ) = ( 𝑦 ∈ 𝐵 ↦ 1 ) ) |
234 |
232 233
|
jca |
⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑦 ∈ 𝐵 ↦ 1 ) ) ) |