| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							caufval | 
							⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( Cau ‘ 𝐷 )  =  { 𝑓  ∈  ( 𝑋  ↑pm  ℂ )  ∣  ∀ 𝑥  ∈  ℝ+ ∃ 𝑘  ∈  ℤ ( 𝑓  ↾  ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) } )  | 
						
						
							| 2 | 
							
								1
							 | 
							eleq2d | 
							⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( 𝐹  ∈  ( Cau ‘ 𝐷 )  ↔  𝐹  ∈  { 𝑓  ∈  ( 𝑋  ↑pm  ℂ )  ∣  ∀ 𝑥  ∈  ℝ+ ∃ 𝑘  ∈  ℤ ( 𝑓  ↾  ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) } ) )  | 
						
						
							| 3 | 
							
								
							 | 
							reseq1 | 
							⊢ ( 𝑓  =  𝐹  →  ( 𝑓  ↾  ( ℤ≥ ‘ 𝑘 ) )  =  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑘 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝑓  =  𝐹  →  ( ℤ≥ ‘ 𝑘 )  =  ( ℤ≥ ‘ 𝑘 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							oveq1d | 
							⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 )  =  ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) )  | 
						
						
							| 7 | 
							
								3 4 6
							 | 
							feq123d | 
							⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓  ↾  ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 )  ↔  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							rexbidv | 
							⊢ ( 𝑓  =  𝐹  →  ( ∃ 𝑘  ∈  ℤ ( 𝑓  ↾  ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 )  ↔  ∃ 𝑘  ∈  ℤ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							ralbidv | 
							⊢ ( 𝑓  =  𝐹  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑘  ∈  ℤ ( 𝑓  ↾  ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 )  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑘  ∈  ℤ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							elrab | 
							⊢ ( 𝐹  ∈  { 𝑓  ∈  ( 𝑋  ↑pm  ℂ )  ∣  ∀ 𝑥  ∈  ℝ+ ∃ 𝑘  ∈  ℤ ( 𝑓  ↾  ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) }  ↔  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑘  ∈  ℤ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) )  | 
						
						
							| 11 | 
							
								2 10
							 | 
							bitrdi | 
							⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( 𝐹  ∈  ( Cau ‘ 𝐷 )  ↔  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑘  ∈  ℤ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) )  |