Step |
Hyp |
Ref |
Expression |
1 |
|
caufval |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( Cau ‘ 𝐷 ) = { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) } ) |
2 |
1
|
eleq2d |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) } ) ) |
3 |
|
reseq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) = ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) ) |
4 |
|
eqidd |
⊢ ( 𝑓 = 𝐹 → ( ℤ≥ ‘ 𝑘 ) = ( ℤ≥ ‘ 𝑘 ) ) |
5 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
6 |
5
|
oveq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) = ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) |
7 |
3 4 6
|
feq123d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
8 |
7
|
rexbidv |
⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∃ 𝑘 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
9 |
8
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
10 |
9
|
elrab |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) } ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
11 |
2 10
|
bitrdi |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |