Metamath Proof Explorer


Theorem iscau2

Description: Express the property " F is a Cauchy sequence of metric D " using an arbitrary upper set of integers. (Contributed by NM, 19-Dec-2006) (Revised by Mario Carneiro, 14-Nov-2013)

Ref Expression
Assertion iscau2 ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 iscau ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) )
2 elfvdm ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met )
3 cnex ℂ ∈ V
4 elpmg ( ( 𝑋 ∈ dom ∞Met ∧ ℂ ∈ V ) → ( 𝐹 ∈ ( 𝑋pm ℂ ) ↔ ( Fun 𝐹𝐹 ⊆ ( ℂ × 𝑋 ) ) ) )
5 2 3 4 sylancl ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( 𝑋pm ℂ ) ↔ ( Fun 𝐹𝐹 ⊆ ( ℂ × 𝑋 ) ) ) )
6 5 simprbda ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( 𝑋pm ℂ ) ) → Fun 𝐹 )
7 ffvresb ( Fun 𝐹 → ( ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) )
8 6 7 syl ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( 𝑋pm ℂ ) ) → ( ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) )
9 8 rexbidv ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( 𝑋pm ℂ ) ) → ( ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) )
10 9 adantr ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( 𝑋pm ℂ ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) )
11 uzid ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ𝑗 ) )
12 11 adantl ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) → 𝑗 ∈ ( ℤ𝑗 ) )
13 eleq1w ( 𝑘 = 𝑗 → ( 𝑘 ∈ dom 𝐹𝑗 ∈ dom 𝐹 ) )
14 fveq2 ( 𝑘 = 𝑗 → ( 𝐹𝑘 ) = ( 𝐹𝑗 ) )
15 14 eleq1d ( 𝑘 = 𝑗 → ( ( 𝐹𝑘 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ( 𝐹𝑗 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) )
16 13 15 anbi12d ( 𝑘 = 𝑗 → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹𝑗 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) )
17 16 rspcv ( 𝑗 ∈ ( ℤ𝑗 ) → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) → ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹𝑗 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) )
18 12 17 syl ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) → ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹𝑗 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) )
19 n0i ( ( 𝐹𝑗 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) → ¬ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) = ∅ )
20 blf ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ball ‘ 𝐷 ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋 )
21 20 fdmd ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → dom ( ball ‘ 𝐷 ) = ( 𝑋 × ℝ* ) )
22 ndmovg ( ( dom ( ball ‘ 𝐷 ) = ( 𝑋 × ℝ* ) ∧ ¬ ( ( 𝐹𝑗 ) ∈ 𝑋𝑥 ∈ ℝ* ) ) → ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) = ∅ )
23 22 ex ( dom ( ball ‘ 𝐷 ) = ( 𝑋 × ℝ* ) → ( ¬ ( ( 𝐹𝑗 ) ∈ 𝑋𝑥 ∈ ℝ* ) → ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) = ∅ ) )
24 21 23 syl ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ¬ ( ( 𝐹𝑗 ) ∈ 𝑋𝑥 ∈ ℝ* ) → ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) = ∅ ) )
25 24 con1d ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ¬ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) = ∅ → ( ( 𝐹𝑗 ) ∈ 𝑋𝑥 ∈ ℝ* ) ) )
26 simpl ( ( ( 𝐹𝑗 ) ∈ 𝑋𝑥 ∈ ℝ* ) → ( 𝐹𝑗 ) ∈ 𝑋 )
27 19 25 26 syl56 ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( 𝐹𝑗 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) → ( 𝐹𝑗 ) ∈ 𝑋 ) )
28 27 adantld ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹𝑗 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) → ( 𝐹𝑗 ) ∈ 𝑋 ) )
29 28 ad2antrr ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) → ( ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹𝑗 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) → ( 𝐹𝑗 ) ∈ 𝑋 ) )
30 18 29 syld ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) → ( 𝐹𝑗 ) ∈ 𝑋 ) )
31 14 eleq1d ( 𝑘 = 𝑗 → ( ( 𝐹𝑘 ) ∈ 𝑋 ↔ ( 𝐹𝑗 ) ∈ 𝑋 ) )
32 14 oveq1d ( 𝑘 = 𝑗 → ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) = ( ( 𝐹𝑗 ) 𝐷 ( 𝐹𝑗 ) ) )
33 32 breq1d ( 𝑘 = 𝑗 → ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ↔ ( ( 𝐹𝑗 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) )
34 13 31 33 3anbi123d ( 𝑘 = 𝑗 → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) ↔ ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹𝑗 ) ∈ 𝑋 ∧ ( ( 𝐹𝑗 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) ) )
35 34 rspcv ( 𝑗 ∈ ( ℤ𝑗 ) → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) → ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹𝑗 ) ∈ 𝑋 ∧ ( ( 𝐹𝑗 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) ) )
36 12 35 syl ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) → ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹𝑗 ) ∈ 𝑋 ∧ ( ( 𝐹𝑗 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) ) )
37 simp2 ( ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹𝑗 ) ∈ 𝑋 ∧ ( ( 𝐹𝑗 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) → ( 𝐹𝑗 ) ∈ 𝑋 )
38 36 37 syl6 ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) → ( 𝐹𝑗 ) ∈ 𝑋 ) )
39 rpxr ( 𝑥 ∈ ℝ+𝑥 ∈ ℝ* )
40 elbl ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹𝑗 ) ∈ 𝑋𝑥 ∈ ℝ* ) → ( ( 𝐹𝑘 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ( ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑗 ) 𝐷 ( 𝐹𝑘 ) ) < 𝑥 ) ) )
41 39 40 syl3an3 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹𝑗 ) ∈ 𝑋𝑥 ∈ ℝ+ ) → ( ( 𝐹𝑘 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ( ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑗 ) 𝐷 ( 𝐹𝑘 ) ) < 𝑥 ) ) )
42 xmetsym ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹𝑗 ) ∈ 𝑋 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ) → ( ( 𝐹𝑗 ) 𝐷 ( 𝐹𝑘 ) ) = ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) )
43 42 3expa ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹𝑗 ) ∈ 𝑋 ) ∧ ( 𝐹𝑘 ) ∈ 𝑋 ) → ( ( 𝐹𝑗 ) 𝐷 ( 𝐹𝑘 ) ) = ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) )
44 43 3adantl3 ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹𝑗 ) ∈ 𝑋𝑥 ∈ ℝ+ ) ∧ ( 𝐹𝑘 ) ∈ 𝑋 ) → ( ( 𝐹𝑗 ) 𝐷 ( 𝐹𝑘 ) ) = ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) )
45 44 breq1d ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹𝑗 ) ∈ 𝑋𝑥 ∈ ℝ+ ) ∧ ( 𝐹𝑘 ) ∈ 𝑋 ) → ( ( ( 𝐹𝑗 ) 𝐷 ( 𝐹𝑘 ) ) < 𝑥 ↔ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) )
46 45 pm5.32da ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹𝑗 ) ∈ 𝑋𝑥 ∈ ℝ+ ) → ( ( ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑗 ) 𝐷 ( 𝐹𝑘 ) ) < 𝑥 ) ↔ ( ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) ) )
47 41 46 bitrd ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹𝑗 ) ∈ 𝑋𝑥 ∈ ℝ+ ) → ( ( 𝐹𝑘 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ( ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) ) )
48 47 3com23 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ∧ ( 𝐹𝑗 ) ∈ 𝑋 ) → ( ( 𝐹𝑘 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ( ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) ) )
49 48 anbi2d ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ∧ ( 𝐹𝑗 ) ∈ 𝑋 ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) ) ) )
50 3anass ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) ) )
51 49 50 bitr4di ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ∧ ( 𝐹𝑗 ) ∈ 𝑋 ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) ) )
52 51 ralbidv ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ∧ ( 𝐹𝑗 ) ∈ 𝑋 ) → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) ) )
53 52 3expia ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐹𝑗 ) ∈ 𝑋 → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) ) ) )
54 53 adantr ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) → ( ( 𝐹𝑗 ) ∈ 𝑋 → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) ) ) )
55 30 38 54 pm5.21ndd ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) ) )
56 55 rexbidva ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) ) )
57 56 adantlr ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( 𝑋pm ℂ ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) ) )
58 10 57 bitrd ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( 𝑋pm ℂ ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) ) )
59 58 ralbidva ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( 𝑋pm ℂ ) ) → ( ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) ) )
60 59 pm5.32da ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( 𝐹 ∈ ( 𝑋pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ𝑗 ) ) : ( ℤ𝑗 ) ⟶ ( ( 𝐹𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ( 𝐹 ∈ ( 𝑋pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) ) ) )
61 1 60 bitrd ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑥 ) ) ) )