Step |
Hyp |
Ref |
Expression |
1 |
|
iscau |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |
2 |
|
elfvdm |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) |
3 |
|
cnex |
⊢ ℂ ∈ V |
4 |
|
elpmg |
⊢ ( ( 𝑋 ∈ dom ∞Met ∧ ℂ ∈ V ) → ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ↔ ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × 𝑋 ) ) ) ) |
5 |
2 3 4
|
sylancl |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ↔ ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × 𝑋 ) ) ) ) |
6 |
5
|
simprbda |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → Fun 𝐹 ) |
7 |
|
ffvresb |
⊢ ( Fun 𝐹 → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |
8 |
6 7
|
syl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |
9 |
8
|
rexbidv |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → ( ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |
11 |
|
uzid |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
12 |
11
|
adantl |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
13 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ dom 𝐹 ↔ 𝑗 ∈ dom 𝐹 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) |
15 |
14
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ( 𝐹 ‘ 𝑗 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
16 |
13 15
|
anbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |
17 |
16
|
rspcv |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) → ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |
18 |
12 17
|
syl |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) → ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |
19 |
|
n0i |
⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) → ¬ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) = ∅ ) |
20 |
|
blf |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ball ‘ 𝐷 ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋 ) |
21 |
20
|
fdmd |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → dom ( ball ‘ 𝐷 ) = ( 𝑋 × ℝ* ) ) |
22 |
|
ndmovg |
⊢ ( ( dom ( ball ‘ 𝐷 ) = ( 𝑋 × ℝ* ) ∧ ¬ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ* ) ) → ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) = ∅ ) |
23 |
22
|
ex |
⊢ ( dom ( ball ‘ 𝐷 ) = ( 𝑋 × ℝ* ) → ( ¬ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ* ) → ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) = ∅ ) ) |
24 |
21 23
|
syl |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ¬ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ* ) → ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) = ∅ ) ) |
25 |
24
|
con1d |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ¬ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) = ∅ → ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ* ) ) ) |
26 |
|
simpl |
⊢ ( ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ* ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) |
27 |
19 25 26
|
syl56 |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( 𝐹 ‘ 𝑗 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) ) |
28 |
27
|
adantld |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) ) |
29 |
28
|
ad2antrr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) → ( ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) ) |
30 |
18 29
|
syld |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) ) |
31 |
14
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ↔ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) ) |
32 |
14
|
oveq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) = ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) |
33 |
32
|
breq1d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) |
34 |
13 31 33
|
3anbi123d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ↔ ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
35 |
34
|
rspcv |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) → ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
36 |
12 35
|
syl |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) → ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
37 |
|
simp2 |
⊢ ( ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) |
38 |
36 37
|
syl6 |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) ) |
39 |
|
rpxr |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ* ) |
40 |
|
elbl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ* ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) ) |
41 |
39 40
|
syl3an3 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) ) |
42 |
|
xmetsym |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) |
43 |
42
|
3expa |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) |
44 |
43
|
3adantl3 |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) |
45 |
44
|
breq1d |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) → ( ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) |
46 |
45
|
pm5.32da |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ+ ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
47 |
41 46
|
bitrd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
48 |
47
|
3com23 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
49 |
48
|
anbi2d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) ) |
50 |
|
3anass |
⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
51 |
49 50
|
bitr4di |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
52 |
51
|
ralbidv |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
53 |
52
|
3expia |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) ) |
54 |
53
|
adantr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) → ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) ) |
55 |
30 38 54
|
pm5.21ndd |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
56 |
55
|
rexbidva |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
57 |
56
|
adantlr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
58 |
10 57
|
bitrd |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
59 |
58
|
ralbidva |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) |
60 |
59
|
pm5.32da |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝐹 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) ) |
61 |
1 60
|
bitrd |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) ) |