| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscau3.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
iscau3.3 |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 3 |
|
iscau3.4 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 4 |
|
iscau2 |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) ) |
| 5 |
2 4
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) ) |
| 6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 7 |
|
ssid |
⊢ ℤ ⊆ ℤ |
| 8 |
|
simpr |
⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 9 |
|
eleq1 |
⊢ ( ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ↔ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) ) |
| 10 |
|
eleq1 |
⊢ ( ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ↔ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ) |
| 11 |
|
xmetsym |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) |
| 12 |
11
|
fveq2d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) → ( I ‘ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) ) = ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 13 |
|
xmetsym |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) = ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) |
| 14 |
13
|
fveq2d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) → ( I ‘ ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) = ( I ‘ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 15 |
|
simp1 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 16 |
|
simp2l |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 17 |
|
simp3l |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) |
| 18 |
|
xmetcl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ* ) |
| 19 |
15 16 17 18
|
syl3anc |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ* ) |
| 20 |
|
simp2r |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) |
| 21 |
|
xmetcl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ∈ ℝ* ) |
| 22 |
15 17 20 21
|
syl3anc |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ∈ ℝ* ) |
| 23 |
|
simp3r |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → 𝑥 ∈ ℝ ) |
| 24 |
23
|
rehalfcld |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( 𝑥 / 2 ) ∈ ℝ ) |
| 25 |
24
|
rexrd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( 𝑥 / 2 ) ∈ ℝ* ) |
| 26 |
|
xlt2add |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ* ∧ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ∈ ℝ* ) ∧ ( ( 𝑥 / 2 ) ∈ ℝ* ∧ ( 𝑥 / 2 ) ∈ ℝ* ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < ( 𝑥 / 2 ) ∧ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < ( 𝑥 / 2 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < ( ( 𝑥 / 2 ) +𝑒 ( 𝑥 / 2 ) ) ) ) |
| 27 |
19 22 25 25 26
|
syl22anc |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < ( 𝑥 / 2 ) ∧ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < ( 𝑥 / 2 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < ( ( 𝑥 / 2 ) +𝑒 ( 𝑥 / 2 ) ) ) ) |
| 28 |
24 24
|
rexaddd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( 𝑥 / 2 ) +𝑒 ( 𝑥 / 2 ) ) = ( ( 𝑥 / 2 ) + ( 𝑥 / 2 ) ) ) |
| 29 |
23
|
recnd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → 𝑥 ∈ ℂ ) |
| 30 |
29
|
2halvesd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( 𝑥 / 2 ) + ( 𝑥 / 2 ) ) = 𝑥 ) |
| 31 |
28 30
|
eqtrd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( 𝑥 / 2 ) +𝑒 ( 𝑥 / 2 ) ) = 𝑥 ) |
| 32 |
31
|
breq2d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < ( ( 𝑥 / 2 ) +𝑒 ( 𝑥 / 2 ) ) ↔ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ) |
| 33 |
|
xmettri |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ≤ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 34 |
15 16 20 17 33
|
syl13anc |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ≤ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 35 |
|
xmetcl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ∈ ℝ* ) |
| 36 |
15 16 20 35
|
syl3anc |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ∈ ℝ* ) |
| 37 |
19 22
|
xaddcld |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) ∈ ℝ* ) |
| 38 |
23
|
rexrd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → 𝑥 ∈ ℝ* ) |
| 39 |
|
xrlelttr |
⊢ ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ∈ ℝ* ∧ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ≤ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 40 |
36 37 38 39
|
syl3anc |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ≤ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 41 |
34 40
|
mpand |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 42 |
32 41
|
sylbid |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < ( ( 𝑥 / 2 ) +𝑒 ( 𝑥 / 2 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 43 |
27 42
|
syld |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < ( 𝑥 / 2 ) ∧ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < ( 𝑥 / 2 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 44 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ∈ V |
| 45 |
|
fvi |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ∈ V → ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) |
| 46 |
44 45
|
ax-mp |
⊢ ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) |
| 47 |
46
|
breq1i |
⊢ ( ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) < ( 𝑥 / 2 ) ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < ( 𝑥 / 2 ) ) |
| 48 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ∈ V |
| 49 |
|
fvi |
⊢ ( ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ∈ V → ( I ‘ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) = ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) |
| 50 |
48 49
|
ax-mp |
⊢ ( I ‘ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) = ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) |
| 51 |
50
|
breq1i |
⊢ ( ( I ‘ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < ( 𝑥 / 2 ) ↔ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < ( 𝑥 / 2 ) ) |
| 52 |
47 51
|
anbi12i |
⊢ ( ( ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) < ( 𝑥 / 2 ) ∧ ( I ‘ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < ( 𝑥 / 2 ) ) ↔ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < ( 𝑥 / 2 ) ∧ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < ( 𝑥 / 2 ) ) ) |
| 53 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ∈ V |
| 54 |
|
fvi |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ∈ V → ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) |
| 55 |
53 54
|
ax-mp |
⊢ ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) |
| 56 |
55
|
breq1i |
⊢ ( ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) |
| 57 |
43 52 56
|
3imtr4g |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) < ( 𝑥 / 2 ) ∧ ( I ‘ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < ( 𝑥 / 2 ) ) → ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ) |
| 58 |
7 8 9 10 12 14 57
|
cau3lem |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ) ) |
| 59 |
6 58
|
syl |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ) ) |
| 60 |
46
|
breq1i |
⊢ ( ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) |
| 61 |
60
|
anbi2i |
⊢ ( ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) |
| 62 |
|
df-3an |
⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ↔ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) |
| 63 |
61 62
|
bitr4i |
⊢ ( ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) |
| 64 |
63
|
ralbii |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) |
| 65 |
64
|
rexbii |
⊢ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) |
| 66 |
65
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) |
| 67 |
56
|
ralbii |
⊢ ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) |
| 68 |
67
|
anbi2i |
⊢ ( ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ↔ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 69 |
|
df-3an |
⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 70 |
68 69
|
bitr4i |
⊢ ( ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 71 |
70
|
ralbii |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 72 |
71
|
rexbii |
⊢ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 73 |
72
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 74 |
59 66 73
|
3bitr3g |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
| 75 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → 𝑀 ∈ ℤ ) |
| 76 |
1
|
rexuz3 |
⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
| 77 |
75 76
|
syl |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
| 78 |
77
|
ralbidv |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
| 79 |
74 78
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
| 80 |
79
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) ) |
| 81 |
5 80
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) ) |